Time-dependent diffusion in undulating structures: Impact on axon diameter estimation

Diffusion MRI may enable non-invasive mapping of axonal microstructure. Most approaches infer axon diameters from effects of time-dependent diffusion on the diffusion-weighted MR signal by modelling axons as straight cylinders. Axons do not, however, run in straight trajectories and so far, the impact of the axonal trajectory on diameter estimation has not been systematically investigated. Here, we employ a toy-model of axons, which we refer to as undulating thin-fiber model, to analyze the impact of undulating trajectories on the diffusion-time dependence represented by the diffusion spectrum. We analyze the spectrum by its height (diffusivity at high frequencies), width (half width at half maximum), and low-frequency behavior (power law exponent). Results show that microscopic orientation dispersion of the thin-fibers is the main parameter that determines the characteristics of the diffusion spectra. Straight cylinders and undulating thin-fibers have virtually identical spectra at lower frequencies. If the straight-cylinder assumption is used to interpret data from undulating thin axons, the diameter is overestimated by an amount proportional to the undulation amplitude and the microscopic orientation dispersion. At high frequencies (short diffusion times), spectra from cylinders and undulating thin-fibers differ. The spectra from the undulating thin-fibers can also differ from that of cylinders by exhibiting power law behaviors with exponents below two. In conclusion, we argue that the non-straight nature of axonal trajectories should not be ignored when analyzing dMRI data and that careful experiments may enable separation of diffusion within straight cylinders and diffusion in undulating thin-fibers.

[1]  Carl-Fredrik Westin,et al.  Resolution limit of cylinder diameter estimation by diffusion MRI: The impact of gradient waveform and orientation dispersion , 2017, NMR in biomedicine.

[2]  A. Szafer,et al.  An analytical model of restricted diffusion in bovine optic nerve , 1997, Magnetic resonance in medicine.

[3]  P. Sterling,et al.  How the Optic Nerve Allocates Space, Energy Capacity, and Information , 2009, The Journal of Neuroscience.

[4]  Jelle Veraart,et al.  Electron microscopy 3-dimensional segmentation and quantification of axonal dispersion and diameter distribution in mouse brain corpus callosum , 2018, bioRxiv.

[5]  F. Ståhlberg,et al.  On the effects of a varied diffusion time in vivo: is the diffusion in white matter restricted? , 2009, Magnetic resonance imaging.

[6]  Alejandra Sierra,et al.  Automated 3D Axonal Morphometry of White Matter , 2018 .

[7]  Bennett A. Landman,et al.  Histological validation of diffusion MRI fiber orientation distributions and dispersion , 2018, NeuroImage.

[8]  Nikos K. Logothetis,et al.  Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque , 2014, Biological Cybernetics.

[9]  Marco Palombo,et al.  Can we detect the effect of spines and leaflets on the diffusion of brain intracellular metabolites? , 2017, NeuroImage.

[10]  P. Mitra,et al.  Conventions and nomenclature for double diffusion encoding NMR and MRI , 2016, Magnetic resonance in medicine.

[11]  P. Basser,et al.  In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. , 2009, Brain : a journal of neurology.

[12]  Karsten Nielsen,et al.  In Vitro Magnetic Stimulation of Pig Phrenic Nerve With Transverse and Longitudinal Induced Electric Fields: Analysis of the Stimulation Site , 2009, IEEE Transactions on Biomedical Engineering.

[13]  高木 岳彦 Visualization of peripheral nerve degeneration and regeneration : monitoring with diffusion tensor tractography , 2010 .

[14]  Hui Zhang,et al.  Imaging brain microstructure with diffusion MRI: practicality and applications , 2019, NMR in biomedicine.

[15]  Victor Braxton,et al.  Biomechanics of the central nervous system : some basic normal and pathologic phenomena , 1960 .

[16]  Daniel C. Alexander,et al.  NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain , 2012, NeuroImage.

[17]  G. Jeffery PNS features of rodent optic nerve axons , 1996, The Journal of comparative neurology.

[18]  P. Basser,et al.  New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter , 2004, Magnetic resonance in medicine.

[19]  F. Ståhlberg,et al.  The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study , 2012, NMR in biomedicine.

[20]  V. Kiselev,et al.  Effective medium theory of a diffusion‐weighted signal , 2010, NMR in biomedicine.

[21]  W. Denk,et al.  Staining and embedding the whole mouse brain for electron microscopy , 2012, Nature Methods.

[22]  Eiichi Fukushima,et al.  The Narrow-Pulse Criterion for Pulsed-Gradient Spin-Echo Diffusion Measurements , 1995 .

[23]  Peter L. Williams,et al.  Gray's Anatomy: The Anatomical Basis of Medicine and Surgery , 1996 .

[24]  Yaniv Assaf,et al.  Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain , 2005, NeuroImage.

[25]  H. Wartenberg,et al.  Elektronenmikroskopische Untersuchungen über das Wachstum der Nervenfasern und über das Auftreten von Markscheiden im Corpus callosum der Katze , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[26]  Dmitry S. Novikov,et al.  Mesoscopic structure of neuronal tracts from time-dependent diffusion , 2015, NeuroImage.

[27]  Markus Nilsson,et al.  Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A model comparison using spherical tensor encoding , 2017, NeuroImage.

[28]  J. M. Ritchie,et al.  On the relation between fibre diameter and conduction velocity in myelinated nerve fibres , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[29]  Dmitry S. Novikov,et al.  What dominates the time dependence of diffusion transverse to axons: Intra- or extra-axonal water? , 2017, NeuroImage.

[30]  Els Fieremans,et al.  Revealing mesoscopic structural universality with diffusion , 2014, Proceedings of the National Academy of Sciences.

[31]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[32]  A. Dale,et al.  Quantitative Histological Validation of Diffusion MRI Fiber Orientation Distributions in the Rat Brain , 2010, PloS one.

[33]  Partha P. Mitra,et al.  Effects of Finite Gradient-Pulse Widths in Pulsed-Field-Gradient Diffusion Measurements , 1995 .

[34]  P. Basser,et al.  Axcaliber: A method for measuring axon diameter distribution from diffusion MRI , 2008, Magnetic resonance in medicine.

[35]  Tim B. Dyrby,et al.  Orientationally invariant indices of axon diameter and density from diffusion MRI , 2010, NeuroImage.

[36]  J. Jonas,et al.  Histomorphometry of the human optic nerve. , 1990, Investigative ophthalmology & visual science.

[37]  Janez Stepišnik,et al.  Time-dependent self-diffusion by NMR spin-echo , 1993 .

[38]  Y. Cohen,et al.  Displacement imaging of spinal cord using q‐space diffusion‐weighted MRI , 2000, Magnetic resonance in medicine.

[39]  A. Scheibel,et al.  Fiber composition of the human corpus callosum , 1992, Brain Research.

[40]  Hui Zhang,et al.  The Influence of Macroscopic and Microscopic Fibre Orientation Dispersion on Diffusion MR Measurements: A Monte-Carlo Simulation Study , 2013 .

[41]  Janez Stepišnik,et al.  Validity limits of Gaussian approximation in cumulant expansion for diffusion attenuation of spin echo , 1999 .

[42]  M. Mallar Chakravarty,et al.  Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy , 2010, NeuroImage.

[43]  Douglas H. Smith,et al.  Axonal pathology in traumatic brain injury , 2013, Experimental Neurology.

[44]  V. Kiselev,et al.  Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation , 2016, NMR in biomedicine.

[45]  D. Topgaard,et al.  Homogeneous length scale of shear-induced multilamellar vesicles studied by diffusion NMR. , 2011, Journal of magnetic resonance.