Niching in evolution strategies

EAs have the tendency to converge quickly into a single solution. Niching methods, the extension of EAs to address this issue, have been investigated up to date mainly within the field of Genetic Algorithms (GAs). In our study we investigate the basis for niching methods within Evolution Strategies (ES), and propose the first ES niching method. Results show that this method can reliably find and maintain multiple niches even for high-dimensional problems.

[1]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[2]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[3]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[4]  David Mautner Himmelblau,et al.  Applied Nonlinear Programming , 1972 .

[5]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[6]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[7]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[8]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[9]  M. Kimura,et al.  The neutral theory of molecular evolution. , 1983, Scientific American.

[10]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[11]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[12]  Thomas Bäck,et al.  Selective Pressure in Evolutionary Algorithms: A Characterization of Selection Mechanisms , 1994, International Conference on Evolutionary Computation.

[13]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[14]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[15]  Michael J. Shaw,et al.  Genetic algorithms with dynamic niche sharing for multimodal function optimization , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[16]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[17]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .