Comparison of the worst and best sum-of-products expressions for multiple-valued functions

Because most practical logic design algorithms produce irredundant sum-of-products (ISOP) expressions, the understanding of ISOPs is crucial. We show a class of functions for which Morreale-Minato's ISOP generation algorithm produces worst ISOPs (WSOP), ISOPs with the most product terms. We show this class has the property that the ratio of the number of products in the WSOP to the number in the minimum ISOP (MSOP) is arbitrarily large when the number of variables is unbounded. The ramifications of this are significant; care must be exercised in designing algorithms that produce ISOPs. We also show that 2/sup n-1/ is a firm upper bound on the number of product terms in any ISOP for switching functions on n variables, answering a question that has been open for 30 years. We show experimental data and extend our results to functions of multiple-valued variables.