New supraordinal classification of Foraminifera: Molecules meet morphology

The limitations of a traditional morphology-based classification of Foraminifera have been demonstrated by molecular phylogenetic studies for several years now. Despite the accumulation of molecular data, no alternative higher-level taxonomic system incorporating these data has been proposed yet. Here, we present a new supraordinal classification of Foraminifera based on an updated SSU rDNA phylogeny completed with the description of major morphological trends in the evolution of this group. According to the new system, multichambered orders are grouped in two new classes: Tubothalamea and Globothalamea. Naked and singlechambered Foraminifera possessing agglutinated or organic-walled tests are arranged into a paraphyletic assemblage of “monothalamids”. The new system maintains some multi-chambered calcareous orders, such as Rotaliida, Miliolida, Robertinida and Spirillinida, although their definitions have been modified in some cases to include agglutinated taxa. The representatives of the planktonic order Globigerinida are tentatively included in the order Rotaliida. The agglutinated Textulariida are probably paraphyletic. The position of the order Lagenida is uncertain because reliable molecular data are only available for one species. The new classification system separates orders or families, which differ in basic chamber shapes, prevailing mode of coiling and distance between successive apertures. It appears that these features correspond better to the main evolutionary trends in Foraminifera than wall composition and structure, both used in traditional classification.

[1]  W. K. Parker,et al.  Introduction to the Study of the Foraminifera , 1862, The British and Foreign Medico-Chirurgical Review.

[2]  S. Revets The Generic Revision of Five Families of Rotaliine Foraminifera , 1996 .

[3]  J. Bernhard,et al.  STRUCTURE, TAXONOMY AND ECOLOGY OF ASTRAMMINA TRIANGULARIS (EARLAND), AN ALLOGROMIID-LIKE AGGLUTINATED FORAMINIFER FROM EXPLORERS COVE, ANTARCTICA , 2002 .

[4]  M. Gouy,et al.  Early origin of foraminifera suggested by SSU rRNA gene sequences. , 1996, Molecular biology and evolution.

[5]  Ziheng Yang,et al.  Bayesian relaxed clock estimation of divergence times in foraminifera. , 2011, Molecular phylogenetics and evolution.

[6]  L. Hottinger Illustrated glossary of terms used in foraminiferal research , 2006 .

[7]  Paweł Topa,et al.  A new approach to modeling of foraminiferal shells , 2005, Paleobiology.

[8]  J. Tyszka Morphospace of foraminiferal shells: results from the moving reference model , 2006 .

[9]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[10]  Ellen Thomas,et al.  Surviving mass extinction by bridging the benthic/planktic divide , 2009, Proceedings of the National Academy of Sciences.

[11]  A. R. Loeblich,et al.  Suprageneric classification of the foraminiferida protozoa , 1984 .

[12]  R. Moore,et al.  Sarcodina : chiefly "Thecamoebians" and Foraminiferida , 1964 .

[13]  J. Pawlowski,et al.  Deep relationships of Rhizaria revealed by phylogenomics: a farewell to Haeckel's Radiolaria. , 2013, Molecular phylogenetics and evolution.

[14]  I. Duijnstee,et al.  Molecular phylogeny of the foraminiferal genus Uvigerina based on ribosomal DNA sequences , 2005 .

[15]  L. Katz,et al.  Genomics and Evolution of Microbial Eukaryotes , 2006 .

[16]  R. Corbett,et al.  Arrival and Expansion of the Invasive Foraminifera Trochammina hadai Uchio in Padilla Bay, Washington , 2012 .

[17]  Alfred R. Loeblich,et al.  Foraminiferal Genera and Their Classification , 1988 .

[18]  M. Fiers,et al.  Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists , 2010, BMC Evolutionary Biology.

[19]  J. Hohenegger Larger Foraminifera : Microscopical Greenhouses Indicating Shallow-Water Tropical and Subtropical Environments in the Present and Past , 1999 .

[20]  Johann Hohenegger,et al.  Large foraminifera : greenhouse constructions and gardeners in the oceanic microcosm , 2011 .

[21]  J. Bernhard,et al.  Larger agglutinated foraminifera of McMurdo Sound, Antarctica: Are Astrammina rara and Notodendrodes antarctikos allogromiids incognito? , 1995 .

[22]  Y. Ujiié,et al.  Molecular evidence for an independent origin of modern triserial planktonic foraminifera from benthic ancestors , 2008 .

[23]  O. Gascuel,et al.  SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. , 2010, Molecular biology and evolution.

[24]  A. Ritter,et al.  Entwurf einer systematischen Zusammenstellung der Foraminiferen , 1861 .

[25]  M. Schultze Reviews: Ueber den Organismus der Polythalamien (Foraminiferen), nebst Bemerkungen über die Rhizopoden in Allgemeinen , 1855 .

[26]  L. Zaninetti,et al.  Actin Suggests Miliammina fusca (Brady) Is Related to Porcellaneous Rather than to Agglutinated Foraminifera , 1997 .

[27]  Paweł Topa,et al.  State-of-the-art in modelling of foraminiferal shells: searching for an emergent model , 2005 .

[28]  D. Scott STUDIES IN BENTHIC FORAMINIFERA , 1993 .

[29]  A. R. Loeblich,et al.  Foraminiferal evolution, diversification, and extinction , 1988 .

[30]  A. Gooday,et al.  Genetic differentiation between Arctic and Antarctic monothalamous foraminiferans , 2008, Polar Biology.

[31]  A. R. Loeblich,et al.  Implications of wall composition and structure in agglutinated foraminifers , 1989, Journal of Paleontology.

[32]  Pawel Topa,et al.  DPD Model of Foraminiferal Chamber Formation: Simulation of Actin Meshwork - Plasma Membrane Interactions , 2011, PPAM.

[33]  H. Kitazato,et al.  Foraminifera promote calcification by elevating their intracellular pH , 2009, Proceedings of the National Academy of Sciences.

[34]  Susan L. Richardson,et al.  SYRINGAMMINA CORBICULA SP. NOV. (XENOPHYOPHOREA) FROM THE CAPE VERDE PLATEAU, E. ATLANTIC , 2001 .

[35]  Witold Alda,et al.  2D and 3D Numerical Models of the Growth of Foraminiferal Shells , 2003, International Conference on Computational Science.

[36]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[37]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[38]  C. Berney,et al.  The evolution of early Foraminifera , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  S. Bowser,et al.  Molecular data reveal high taxonomic diversity of allogromiid Foraminifera in Explorers Cove (McMurdo Sound, Antarctica) , 2002, Polar Biology.

[40]  G. Gudmundsson Phylogeny, ontogeny and systematics of Recent Soritacea Ehrenberg 1839 (Foraminiferida) , 1994 .

[41]  Pawel Topa,et al.  Local Minimization Paradigm in Numerical Modeling of Foraminiferal Shells , 2002, International Conference on Computational Science.

[42]  M. Brasier,et al.  Foraminiferid Architectural History; A review using the MinLOC and PI Methods , 1982, Journal of Micropalaeontology.

[43]  B. Zwaan,et al.  MOLECULAR PHYLOGENY OF COMMON CIBICIDIDS AND RELATED ROTALIIDA (FORAMINIFERA) BASED ON SMALL SUBUNIT rDNA SEQUENCES , 2009 .

[44]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[45]  A. Gooday,et al.  A new monothalamous foraminiferan from 1000 to 6300 m water depth in the Weddell Sea: morphological and molecular characterisation , 2004 .

[46]  E. Heron‐Allen A Manual of Foraminifera , 1934, Nature.

[47]  Kaminski,et al.  The year 2010 classification of the agglutinated foraminifera , 2014, Micropaleontology.

[48]  J. A. Cushman Foraminifera: Their Classification and Economic Use , 1948 .

[49]  D. Vachard,et al.  Palaeozoic Foraminifera: Systematics, palaeoecology and responses to global changes , 2010 .

[50]  A. Gooday,et al.  A new genus of xenophyophores (Foraminifera) from Japan Trench: morphological description, molecular phylogeny and elemental analysis , 2009 .

[51]  V. Mikhalevich Taxonomic position of the superorder Fusulinoida Fursenko in the Foraminifera system , 2009 .

[52]  P. Webb,et al.  Late Quaternary foraminifera from raised deposits of the Cape Royds-Cape Barne area, Ross Island, Antarctica , 1986 .

[53]  J. Pawlowski,et al.  Phylogeny and Rates of Molecular Evolution of Planktonic Foraminifera: SSU rDNA Sequences Compared to the Fossil Record , 1997, Journal of Molecular Evolution.

[54]  M. Holzmann,et al.  MOLECULAR DATA REVEAL PARALLEL EVOLUTION IN NUMMULITID FORAMINIFERA , 2003 .

[55]  T. Okamoto,et al.  Analysis of heteromorph ammonoids by differential geometry , 1988 .

[56]  M. Holzmann,et al.  Taxonomic relationships in the genus Ammonia (Foraminifera) based on ribosomal DNA sequences , 2000, Journal of Micropalaeontology.

[57]  M. Gouy,et al.  Extreme differences in rates of molecular evolution of foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. , 1997, Molecular biology and evolution.

[58]  I. Bolívar,et al.  Molecular Evidence That Reticulomyxa Filosa Is A Freshwater Naked Foraminifer , 1999, The Journal of eukaryotic microbiology.

[59]  D. Longet,et al.  Higher-level phylogeny of Foraminifera inferred from the RNA polymerase II (RPB1) gene. , 2007, European journal of protistology.

[60]  A. Gooday,et al.  Global genetic homogeneity in the deep-sea foraminiferan Epistominella exigua (Rotaliida: Pseudoparrellidae) , 2009 .

[61]  F. Mekik Early Cretaceous Pantanelliidae (Radiolaria) from Northwest Turkey , 2000 .

[62]  L. Fraissinet-Tachet,et al.  Molecular evidence for widespread occurrence of Foraminifera in soils. , 2010, Environmental microbiology.

[63]  Y. Delage,et al.  Traité de zoologie concrète , 1903 .

[64]  M. Holzmann,et al.  Molecular phylogeny of large miliolid foraminifera (Soritacea Ehrenberg 1839) , 2001 .

[65]  Q. Ansermet Bipolar gene flow in deep-sea benthic foraminifera , 2007 .

[66]  J. Debenay,et al.  The main morphological trends in the development of the foraminiferal aperture and their taxonomic significance , 2001, Journal of Micropalaeontology.

[67]  C. de Vargas,et al.  Molecular versus taxonomic rates of evolution in planktonic foraminifera. , 1998, Molecular phylogenetics and evolution.

[68]  W. W. Barker,et al.  Test ultrastructure and taphonomy of the monothalamous agglutinated foraminifer Cribrothalammina, n. gen., alba (Heron-Allen and Earland) , 1988 .

[69]  J. Pawlowski,et al.  Novel lineages of Southern Ocean deep-sea foraminifera revealed by environmental DNA sequencing , 2011 .

[70]  V. Mikhalevich Polymerization and oligomerization in foraminiferal evolution , 2005 .

[71]  D M Raup,et al.  Theoretical Morphology of the Coiled Shell , 1965, Science.

[72]  B. S. Gupta Systematics of moder Foraminifera , 1999 .

[73]  R. C. Selley,et al.  Encyclopedia of geology , 2005 .

[74]  H. Tappan,et al.  Suprageneric revisions of some calcareous Foraminiferida , 1981 .

[75]  C. Berney,et al.  PHYLOGENY OF ALLOGROMIID FORAMINIFERA INFERRED FROM SSU rRNA GENE SEQUENCES , 2002 .

[76]  L. Parfrey,et al.  Phylogeny and Ultrastructure of Miliammina fusca: Evidence for Secondary Loss of Calcification in a Miliolid Foraminifer , 2006, The Journal of eukaryotic microbiology.

[77]  I. Bolívar,et al.  ACTIN PHYLOGENY OF FORAMINIFERA , 2005 .

[78]  D. Kroon,et al.  Planktic foraminiferal molecular evolution and their polyphyletic origins from benthic taxa , 1997 .

[79]  J. Pawłowski,et al.  Short rDNA Barcodes for Species Identification in Foraminifera , 2010, The Journal of eukaryotic microbiology.

[80]  B. Zwaan,et al.  Molecular phylogeny of Rotaliida (Foraminifera) based on complete small subunit rDNA sequences , 2008 .

[81]  L. Farinelli,et al.  Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments , 2011, Proceedings of the National Academy of Sciences.