Electrostatically Reversible Polarity of Ambipolar α-MoTe2 Transistors.

A doping-free transistor made of ambipolar α-phase molybdenum ditelluride (α-MoTe2) is proposed in which the transistor polarity (p-type and n-type) is electrostatically controlled by dual top gates. The voltage signal in one of the gates determines the transistor polarity, while the other gate modulates the drain current. We demonstrate the transistor operation experimentally, with electrostatically controlled polarity of both p- and n-type in a single transistor.

[1]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[2]  Lain-Jong Li,et al.  Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics , 2013 .

[3]  Joerg Appenzeller,et al.  WSe2 field effect transistors with enhanced ambipolar characteristics , 2013 .

[4]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[5]  Andras Kis,et al.  Electron and hole mobilities in single-layer WSe2. , 2014, ACS nano.

[6]  J. Knoch,et al.  High-performance carbon nanotube field-effect transistor with tunable polarities , 2005, IEEE Transactions on Nanotechnology.

[7]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[8]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[9]  Lain-Jong Li,et al.  Large-Area Aiming Synthesis of WSe2 Monolayers , 2013, 1304.7365.

[10]  Pablo Jarillo-Herrero,et al.  Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. , 2013, Nano letters.

[11]  Madan Dubey,et al.  Large-Area 2-D Electronics: Materials, Technology, and Devices , 2013, Proceedings of the IEEE.

[12]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[13]  Stefan Slesazeck,et al.  Reconfigurable silicon nanowire transistors. , 2012, Nano letters.

[14]  Wei Huang,et al.  Preparation of MoS₂-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. , 2012, Small.

[15]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2014, ACS nano.

[16]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[17]  J. Kong,et al.  Integrated Circuits Based on Bilayer MoS , 2012 .

[18]  Naoki Harada,et al.  Computational study on electrical properties of transition metal dichalcogenide field-effect transistors with strained channel , 2014 .

[19]  Yan Xin,et al.  Ambipolar molybdenum diselenide field-effect transistors: field-effect and Hall mobilities. , 2014, ACS nano.

[20]  Frank Schwierz,et al.  Graphene Transistors: Status, Prospects, and Problems , 2013, Proceedings of the IEEE.

[21]  Yusuf Leblebici,et al.  Configurable Logic Gates Using Polarity-Controlled Silicon Nanowire Gate-All-Around FETs , 2014, IEEE Electron Device Letters.

[22]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[23]  Frédéric Gaffiot,et al.  CNTFET Modeling and Reconfigurable Logic-Circuit Design , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[25]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[26]  Kazuhito Tsukagoshi,et al.  Ambipolar MoTe2 Transistors and Their Applications in Logic Circuits , 2014, Advanced materials.

[27]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[28]  Yoshihiro Iwasa,et al.  Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. , 2013, Nano letters.

[29]  Jing Guo,et al.  Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. , 2013, Nano letters.

[30]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[31]  Yan Xin,et al.  Field-effect transistors based on few-layered α-MoTe(2). , 2014, ACS nano.

[32]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[33]  S. L. Li,et al.  High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits. , 2013, Nanoscale.

[34]  Growth of textured nonstoichiometric MoTe2 films from Mo/Te layers and their use as precursor in the synthesis of MoTe2−xSx films , 2004 .

[35]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature Nanotechnology.

[36]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[37]  Giovanni De Micheli,et al.  An Efficient Gate Library for Ambipolar CNTFET Logic , 2011, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[38]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[39]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[40]  M. Fontana,et al.  Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions , 2012, Scientific Reports.

[41]  Kazuhito Tsukagoshi,et al.  Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe₂. , 2014, ACS nano.

[42]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[43]  Y. J. Zhang,et al.  Electrically Switchable Chiral Light-Emitting Transistor , 2014, Science.

[44]  J. Appenzeller,et al.  Toward low-power electronics: tunneling phenomena in transition metal dichalcogenides. , 2014, ACS nano.

[45]  K. Tsukagoshi,et al.  Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. , 2013, Nano letters.

[46]  Gerhard Tröster,et al.  Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate. , 2013, ACS nano.

[47]  Reconfigurable p-n junction diodes and the photovoltaic effect in exfoliated MoS2 films , 2014, 1401.5729.

[48]  Claudia Ruppert,et al.  Optical properties and band gap of single- and few-layer MoTe2 crystals. , 2014, Nano letters.

[49]  Thomas Mikolajick,et al.  Dually active silicon nanowire transistors and circuits with equal electron and hole transport. , 2013, Nano letters.

[50]  Yusuf Leblebici,et al.  MoS2 transistors operating at gigahertz frequencies. , 2014, Nano letters.

[51]  Zhixian Zhou,et al.  Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. , 2013, ACS nano.

[52]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[53]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[54]  Madan Dubey,et al.  High gain, low noise, fully complementary logic inverter based on bi-layer WSe2 field effect transistors , 2014 .

[55]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[56]  A. Amrouche,et al.  Semiconducting properties and band structure of MoTe2 single crystals , 1984 .

[57]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.