Electrical switching dynamics in circular and rectangular Ge2Sb2Te5 nanopillar phase change memory devices

We have measured the critical phase change conditions induced by electrical pulses in Ge2Sb2Te5 nanopillar phase change memory devices by constructing a comprehensive resistance map as a function of pulse parameters (width, amplitude, and trailing edge). Our measurements reveal that the heating scheme and the details of the contact geometry play the dominant role in determining the final phase composition of the device, such that a nonuniform heating scheme using rectangular contacts promotes partial amorphization/crystallization in a wide range of pulse parameters enabling multiple resistance levels for data storage applications. Furthermore we find that fluctuations in the snap-back voltage and set/reset resistances in repeated switching experiments are related to the details of the current distribution, such that a uniform current injection geometry (i.e., circular contact) favors more reproducible switching parameters. This shows that possible geometrical defects in nanoscale phase change memory devic...

[1]  Andrea L. Lacaita,et al.  Switching and programming dynamics in phase-change memory cells , 2005 .

[2]  H. Wong,et al.  Analysis of Temperature in Phase Change Memory Scaling , 2007, IEEE Electron Device Letters.

[3]  M. Moniwa,et al.  Ta2O5 Interfacial Layer between GST and W Plug enabling Low Power Operation of Phase Change Memories , 2006, 2006 International Electron Devices Meeting.

[4]  A. Pirovano,et al.  Electrothermal and phase-change dynamics in chalcogenide-based memories , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[5]  G. Lempérière,et al.  Influence of a d.c. substrate bias on the resistivity, composition, crystallite size and microstrain of WTi and WTi-N films , 1995 .

[6]  A. Pirovano,et al.  Analysis of phase distribution in phase-change nonvolatile memories , 2004, IEEE Electron Device Letters.

[7]  Modeling Considerations for Phase Change Electronic Memory Devices , 2006 .

[8]  Daniele Ielmini,et al.  Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices , 2007 .

[9]  E. Williams,et al.  Mapping electron flow using magnetic force microscopy , 2003 .

[10]  A. Pirovano,et al.  Statistical analysis and modeling of programming and retention in PCM arrays , 2007, 2007 IEEE International Electron Devices Meeting.

[11]  Calculation of threshold voltage for phase-change memory device , 2007 .

[12]  Se-Ho Lee,et al.  Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. , 2007, Nature nanotechnology.

[13]  D. Cahill,et al.  Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates , 2004, Science.

[14]  A. Pirovano,et al.  Electronic switching in phase-change memories , 2004, IEEE Transactions on Electron Devices.

[15]  Dae-Hwang Kim,et al.  Three-dimensional simulation model of switching dynamics in phase change random access memory cells , 2007 .

[16]  Dolores C. Miller,et al.  Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials , 2007 .

[17]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[18]  D. Ielmini,et al.  Recovery and Drift Dynamics of Resistance and Threshold Voltages in Phase-Change Memories , 2007, IEEE Transactions on Electron Devices.

[19]  S. G. Bishop,et al.  Thermal conductivity of phase-change material Ge2Sb2Te5 , 2006 .