A technique to derive the analytical form of convex envelopes for some bivariate functions

In the recent paper (Locatelli and Schoen in Math Program, 2013) it is shown that the value of the convex envelope of some bivariate functions over polytopes can be computed by solving a continuously differentiable convex problem. In this paper we show how this result can be exploited to derive in some cases the analytical form of the envelope. The technique is illustrated through two examples.

[1]  Fabio Tardella,et al.  Existence and sum decomposition of vertex polyhedral convex envelopes , 2008, Optim. Lett..

[2]  Harold P. Benson On the Construction of Convex and Concave Envelope Formulas for Bilinear and Fractional Functions on Quadrilaterals , 2004, Comput. Optim. Appl..

[3]  Nikolaos V. Sahinidis,et al.  Analysis of Bounds for Multilinear Functions , 2001, J. Glob. Optim..

[4]  Nikolaos V. Sahinidis,et al.  Convex envelopes of products of convex and component-wise concave functions , 2012, J. Glob. Optim..

[5]  Hanif D. Sherali,et al.  CONVEX ENVELOPES OF MULTILINEAR FUNCTIONS OVER A UNIT HYPERCUBE AND OVER SPECIAL DISCRETE SETS , 1997 .

[6]  Samuel Burer,et al.  Computable representations for convex hulls of low-dimensional quadratic forms , 2010, Math. Program..

[7]  John E. Mitchell,et al.  Convex quadratic relaxations of nonconvex quadratically constrained quadratic programs , 2014, Optim. Methods Softw..

[8]  Christodoulos A. Floudas,et al.  Convex envelopes for edge-concave functions , 2005, Math. Program..

[9]  Ignacio E. Grossmann,et al.  A Branch and Contract Algorithm for Problems with Concave Univariate, Bilinear and Linear Fractional Terms , 1999, J. Glob. Optim..

[10]  Panos M. Pardalos,et al.  Frontiers in Global Optimization , 2012 .

[11]  James E. Falk,et al.  Jointly Constrained Biconvex Programming , 1983, Math. Oper. Res..

[12]  F. Tardella On the existence of polyhedral convex envelopes , 2004 .

[13]  Hanif D. Sherali,et al.  An explicit characterization of the convex envelope of a bivariate bilinear function over special polytopes , 1991 .

[14]  Nikolaos V. Sahinidis,et al.  Convex envelopes generated from finitely many compact convex sets , 2013, Math. Program..

[15]  Robert Weismantel,et al.  The Convex Envelope of (n--1)-Convex Functions , 2008, SIAM J. Optim..

[16]  Anatoliy D. Rikun,et al.  A Convex Envelope Formula for Multilinear Functions , 1997, J. Glob. Optim..

[17]  Jeff T. Linderoth A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs , 2005, Math. Program..

[18]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[19]  Fabio Schoen,et al.  On convex envelopes for bivariate functions over polytopes , 2014, Math. Program..

[20]  Yves Crama Concave extensions for nonlinear 0–1 maximization problems , 1993, Math. Program..

[21]  Nikolaos V. Sahinidis,et al.  Semidefinite Relaxations of Fractional Programs via Novel Convexification Techniques , 2001, J. Glob. Optim..

[22]  Jean-Philippe P. Richard,et al.  KRANNERT GRADUATE SCHOOL OF MANAGEMENT , 2010 .

[23]  Takahito Kuno,et al.  A branch-and-bound algorithm for maximizing the sum of several linear ratios , 2002, J. Glob. Optim..

[24]  Kurt M. Anstreicher,et al.  On convex relaxations for quadratically constrained quadratic programming , 2012, Math. Program..