Group sum chromatic number of graphs

We investigate the group sum chromatic number ( ? g Σ ( G ) ) of graphs, i.e. the smallest value s such that taking any Abelian group G of order s , there exists a function f : E ( G ) ? G such that the sums of edge labels properly colour the vertices. It is known that ? g Σ ( G ) ? { ? ( G ) , ? ( G ) + 1 } for any graph G with no component of order less than 3 and we characterize the graphs for which ? g Σ ( G ) = ? ( G ) .

[1]  Bruce A. Reed,et al.  Vertex-Colouring Edge-Weightings , 2007, Comb..

[2]  Joseph A. Gallian,et al.  Harmonious groups , 1991, J. Comb. Theory, Ser. A.

[3]  Joseph A. Gallian,et al.  A Dynamic Survey of Graph Labeling , 2009, The Electronic Journal of Combinatorics.

[4]  Qinglin Yu,et al.  On vertex-coloring 13-edge-weighting , 2008 .

[5]  Florian Pfender,et al.  Vertex-coloring edge-weightings: Towards the 1-2-3-conjecture , 2010, J. Comb. Theory B.

[6]  Yehuda Roditty,et al.  On zero-sum partitions and anti-magic trees , 2009, Discret. Math..

[7]  Qinglin Yu,et al.  Vertex-coloring 2-edge-weighting of graphs , 2010, Eur. J. Comb..

[8]  Richard P. Stanley,et al.  Linear homogeneous Diophantine equations and magic labelings of graphs , 1973 .

[9]  Mark Hovey A-cordial graphs , 1991, Discret. Math..

[10]  Nicholas J. Cavenagh,et al.  Edge-Magic Group Labellings of Countable Graphs , 2006, Electron. J. Comb..

[11]  Diana Combe,et al.  Magic labellings of graphs over finite abelian groups , 2004, Australas. J Comb..

[12]  Bruce A. Reed,et al.  Degree constrained subgraphs , 2005, Discret. Appl. Math..

[13]  A. Thomason,et al.  Edge weights and vertex colours , 2004 .

[14]  N. J. A. Sloane,et al.  On Additive Bases and Harmonious Graphs , 1980, SIAM J. Algebraic Discret. Methods.

[15]  Dalibor Froncek,et al.  Group distance magic labeling of Cartesian product of cycles , 2013, Australas. J Comb..

[16]  Andrzej Zak Harmonious order of graphs , 2009, Discret. Math..