Systematic evaluation of convolution neural network advances on the Imagenet

[1]  Vikas Singh,et al.  On architectural choices in deep learning: From network structure to gradient convergence and parameter estimation , 2017, ArXiv.

[2]  Quoc V. Le,et al.  Neural Architecture Search with Reinforcement Learning , 2016, ICLR.

[3]  Gregory Shakhnarovich,et al.  FractalNet: Ultra-Deep Neural Networks without Residuals , 2016, ICLR.

[4]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[5]  Jian Sun,et al.  Object Detection Networks on Convolutional Feature Maps , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Raquel Urtasun,et al.  Understanding the Effective Receptive Field in Deep Convolutional Neural Networks , 2016, NIPS.

[7]  Daniel Soudry,et al.  No bad local minima: Data independent training error guarantees for multilayer neural networks , 2016, ArXiv.

[8]  Eugenio Culurciello,et al.  An Analysis of Deep Neural Network Models for Practical Applications , 2016, ArXiv.

[9]  Nikos Komodakis,et al.  Wide Residual Networks , 2016, BMVC.

[10]  Qi Tian,et al.  DisturbLabel: Regularizing CNN on the Loss Layer , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Xiaogang Wang,et al.  Multi-Bias Non-linear Activation in Deep Neural Networks , 2016, ICML.

[12]  Tianxiang Gao,et al.  Degrees of Freedom in Deep Neural Networks , 2016, UAI.

[13]  Jian Sun,et al.  Identity Mappings in Deep Residual Networks , 2016, ECCV.

[14]  Jian Sun,et al.  Instance-Aware Semantic Segmentation via Multi-task Network Cascades , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Sepp Hochreiter,et al.  Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.

[17]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[18]  Jiri Matas,et al.  All you need is a good init , 2015, ICLR.

[19]  Ronan Sicre,et al.  Particular object retrieval with integral max-pooling of CNN activations , 2015, ICLR.

[20]  Bohyung Han,et al.  Learning Multi-domain Convolutional Neural Networks for Visual Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Zhuowen Tu,et al.  Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree , 2015, AISTATS.

[22]  Xiaoou Tang,et al.  Image Super-Resolution Using Deep Convolutional Networks , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Reza Fuad Rachmadi,et al.  Vehicle Color Recognition using Convolutional Neural Network , 2015, ArXiv.

[24]  Tianqi Chen,et al.  Empirical Evaluation of Rectified Activations in Convolutional Network , 2015, ArXiv.

[25]  James Philbin,et al.  FaceNet: A unified embedding for face recognition and clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[27]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[28]  Pierre Baldi,et al.  Learning Activation Functions to Improve Deep Neural Networks , 2014, ICLR.

[29]  Thomas Brox,et al.  Striving for Simplicity: The All Convolutional Net , 2014, ICLR.

[30]  Yann LeCun,et al.  The Loss Surfaces of Multilayer Networks , 2014, AISTATS.

[31]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Yann LeCun,et al.  Computing the stereo matching cost with a convolutional neural network , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[34]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[35]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[37]  Andrew Zisserman,et al.  Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition , 2014, ArXiv.

[38]  Ming Yang,et al.  DeepFace: Closing the Gap to Human-Level Performance in Face Verification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Jinyu Li,et al.  Investigation of maxout networks for speech recognition , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[40]  Alex Krizhevsky,et al.  One weird trick for parallelizing convolutional neural networks , 2014, ArXiv.

[41]  Andrew G. Howard,et al.  Some Improvements on Deep Convolutional Neural Network Based Image Classification , 2013, ICLR.

[42]  Qiang Chen,et al.  Network In Network , 2013, ICLR.

[43]  Razvan Pascanu,et al.  Learned-Norm Pooling for Deep Feedforward and Recurrent Neural Networks , 2013, ECML/PKDD.

[44]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[45]  Yoshua Bengio,et al.  Maxout Networks , 2013, ICML.

[46]  Rob Fergus,et al.  Stochastic Pooling for Regularization of Deep Convolutional Neural Networks , 2013, ICLR.

[47]  Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013 , 2013, ICML.

[48]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[49]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[50]  Yoshua Bengio,et al.  Practical Recommendations for Gradient-Based Training of Deep Architectures , 2012, Neural Networks: Tricks of the Trade.

[51]  Yoshua Bengio,et al.  Deep Sparse Rectifier Neural Networks , 2011, AISTATS.

[52]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[53]  Tony R. Martinez,et al.  The general inefficiency of batch training for gradient descent learning , 2003, Neural Networks.

[54]  J. van Leeuwen,et al.  Neural Networks: Tricks of the Trade , 2002, Lecture Notes in Computer Science.

[55]  Klaus-Robert Müller,et al.  Neural Networks: Tricks of the Trade, this book is an outgrowth of a 1996 NIPS workshop , 1998, NIPS 1998.

[56]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[57]  Jürgen Schmidhuber,et al.  Discovering Neural Nets with Low Kolmogorov Complexity and High Generalization Capability , 1997, Neural Networks.

[58]  Yann LeCun,et al.  Effiicient BackProp , 1996, Neural Networks: Tricks of the Trade.

[59]  Karel J. Zuiderveld,et al.  Contrast Limited Adaptive Histogram Equalization , 1994, Graphics Gems.

[60]  Paul S. Heckbert,et al.  Graphics gems IV , 1994 .

[61]  G. Kane Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol 1: Foundations, vol 2: Psychological and Biological Models , 1994 .

[62]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[63]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[64]  Robert A. Hummel,et al.  Image Enhancement by Histogram transformation , 1975 .

[65]  William H. Offenhauser,et al.  Wild Boars as Hosts of Human-Pathogenic Anaplasma phagocytophilum Variants , 2012, Emerging infectious diseases.