Hierarchical Bayesian estimation for adsorption isotherm parameter determination

Abstract Estimation of isotherm model parameters from experimental data is necessary in adsorption process modeling. To facilitate isotherm modeling, databases that store experimental data exist. Nevertheless, data inconsistency among different researchers must be resolved to find a single set of isotherm parameters from multiple data sets. Herein, we propose a hierarchical Bayesian estimation method to quantify the discrepancy by a multiplicative factor while simultaneously obtaining the probability distributions of a single set of isotherm parameters. This approach also allows us to identify outliers, which are data sets that are not in agreement with other sets. The proposed approach is demonstrated for the case of CO2 adsorption in the metal-organic framework UiO-66.

[1]  Ryan P. Lively,et al.  Uncertainty quantification via Bayesian inference using Sequential Monte Carlo methods for CO2 adsorption process , 2016 .

[2]  S. Arrhenius “On the Infl uence of Carbonic Acid in the Air upon the Temperature of the Ground” (1896) , 2017, The Future of Nature.

[3]  R. T. Yang,et al.  Gas Separation by Adsorption Processes , 1987 .

[4]  Gang Xu,et al.  An Improved CO2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory , 2014 .

[5]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[6]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[7]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[8]  Christopher W. Jones,et al.  Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. , 2009, ChemSusChem.

[9]  M. Hill,et al.  A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66. , 2013, Chemical communications.

[10]  Ryan P. Lively,et al.  Bayesian estimation of parametric uncertainties, quantification and reduction using optimal design of experiments for CO2 adsorption on amine sorbents , 2015, Comput. Chem. Eng..

[11]  Krista S. Walton,et al.  Rational Tuning of Water Vapor and CO2 Adsorption in Highly Stable Zr-Based MOFs , 2012 .

[12]  Bayesian Estimation, Uncertainty Propagation and Design of Experiments for CO2 Adsorption on Amine Sorbents , 2014 .

[13]  Krista S. Walton,et al.  Tuning the adsorption properties of UiO-66 via ligand functionalization. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[14]  Wioletta Grzenda,et al.  THE ADVANTAGES OF BAYESIAN METHODS OVER CLASSICAL METHODS IN THE CONTEXT OF CREDIBLE INTERVALS , 2015 .

[15]  Yamil J. Colón,et al.  Water adsorption in UiO-66: the importance of defects. , 2014, Chemical communications.

[16]  A. Szatkowski Contribution to the qualitative theory of non‐linear systems and networks , 1980 .

[17]  David S. Sholl,et al.  How Reproducible Are Isotherm Measurements in Metal–Organic Frameworks? , 2017 .

[18]  J. A. Ritter,et al.  A reference high-pressure CO2 adsorption isotherm for ammonium ZSM-5 zeolite: results of an interlaboratory study , 2018, Adsorption.

[19]  J. Atwood,et al.  Flexible (breathing) interpenetrated metal-organic frameworks for CO2 separation applications. , 2008, Journal of the American Chemical Society.

[20]  Abass A. Olajire,et al.  CO2 capture and separation technologies for end-of-pipe applications – A review , 2010 .

[21]  Zhong Li,et al.  Enhanced stability and CO2 affinity of a UiO-66 type metal-organic framework decorated with dimethyl groups. , 2012, Dalton transactions.

[22]  C. Serre,et al.  Crystallized frameworks with giant pores: are there limits to the possible? , 2005, Accounts of chemical research.

[23]  Ryan P. Lively,et al.  Seven chemical separations to change the world , 2016, Nature.

[24]  Seda Keskin,et al.  Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? , 2010, ChemSusChem.

[25]  Ping Chen,et al.  Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. , 2013, Journal of the American Chemical Society.

[26]  P. Reichert,et al.  A comparison of techniques for the estimation of model prediction uncertainty , 1999 .

[27]  Krista S. Walton,et al.  Water stability and adsorption in metal-organic frameworks. , 2014, Chemical reviews.

[28]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[29]  Costas Tsouris,et al.  Separation of CO2 from Flue Gas: A Review , 2005 .

[30]  M. Tadé,et al.  Adsorption of CH4 and CO2 on Zr-metal organic frameworks. , 2012, Journal of colloid and interface science.

[31]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[32]  C. Serre,et al.  Understanding the Thermodynamic and Kinetic Behavior of the CO2/CH4 Gas Mixture within the Porous Zirconium Terephthalate UiO-66(Zr): A Joint Experimental and Modeling Approach , 2011 .

[33]  Omid Ghaffari Nik,et al.  Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation , 2012 .

[34]  Aarti,et al.  On the development of Vacuum Swing adsorption (VSA) technology for post-combustion CO2 capture , 2013 .

[35]  Russell Steele,et al.  Statins for secondary prevention in elderly patients: a hierarchical bayesian meta-analysis. , 2008, Journal of the American College of Cardiology.

[36]  Ryan P. Lively,et al.  Establishing upper bounds on CO2 swing capacity in sub-ambient pressure swing adsorption via molecular simulation of metal–organic frameworks , 2017 .

[37]  Lin Yang,et al.  Studies on photocatalytic CO(2) reduction over NH2 -Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks. , 2013, Chemistry.

[38]  Guozhu Mao,et al.  A Bayesian hierarchical model for urban air quality prediction under uncertainty , 2008 .

[39]  Ryan P. Lively,et al.  Defects in Metal-Organic Frameworks: Challenge or Opportunity? , 2015, The journal of physical chemistry letters.

[40]  Enrico Drioli,et al.  Membrane technologies for CO2 separation , 2010 .