Neighbor sum distinguishing total coloring of sparse IC-planar graphs

Abstract Two distinct crossings are independent if the end-vertices of the crossed edge are mutually different. If a graph G has a drawing in the plane such that every two crossings are independent, then we call G a plane graph with independent crossings or IC-planar graph for short. A proper total- k -coloring of a graph G is a mapping c : V ( G ) ∪ E ( G ) → { 1 , 2 , . . . , k } such that any two adjacent elements in V ( G ) ∪ E ( G ) receive different colors. Let ∑ c ( v ) denote the sum of the color of a vertex v and the colors of all incident edges of v . A total- k -neighbor sum distinguishing-coloring of G is a total- k -coloring of G such that for each edge u v ∈ E ( G ) , ∑ c ( u ) ≠ ∑ c ( v ) . The least number k needed for such a coloring of G is the neighbor sum distinguishing total chromatic number, denoted by χ Σ ′ ′ ( G ) . In this paper, it is proved that χ Σ ′ ′ ( G ) ≤ max { Δ ( G ) + 3 , 11 } if G is a triangle-free IC-planar graph, and χ Σ ′ ′ ( G ) ≤ max { Δ ( G ) + 3 , 15 } if G is an IC-planar graph without adjacent triangles, where Δ ( G ) is the maximum degree of G .

[1]  Tom Coker,et al.  The adjacent vertex distinguishing total chromatic number , 2010, Discret. Math..

[2]  Xuding Zhu,et al.  Total weight choosability of graphs , 2011, J. Graph Theory.

[3]  G. Wang,et al.  Neighbor sum distinguishing total colorings of K4-minor free graphs , 2013 .

[4]  Xiaowei Yu,et al.  On the neighbor sum distinguishing total coloring of planar graphs , 2016, Theor. Comput. Sci..

[5]  Wei-Fan Wang,et al.  Adjacent vertex distinguishing total colorings of outerplanar graphs , 2010, J. Comb. Optim..

[6]  David E. Scheim,et al.  The number of edge 3-colorings of a planar cubic graph as a permanent , 1974, Discret. Math..

[7]  Florian Pfender,et al.  Vertex-coloring edge-weightings: Towards the 1-2-3-conjecture , 2010, J. Comb. Theory B.

[8]  Aijun Dong,et al.  Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree , 2014 .

[9]  B. Yao,et al.  On adjacent-vertex-distinguishing total coloring of graphs , 2005 .

[10]  Jiguo Yu,et al.  Neighbor Sum (Set) Distinguishing Total Choosability Via the Combinatorial Nullstellensatz , 2017, Graphs Comb..

[11]  Yunfang Tang,et al.  Asymptotically optimal neighbor sum distinguishing total colorings of graphs , 2017, Discret. Math..

[12]  Jakub Przybylo,et al.  Total Weight Choosability of Graphs , 2011, Electron. J. Comb..

[13]  Qiaoling Ma,et al.  Neighbor sum distinguishing total colorings of triangle free planar graphs , 2015 .

[14]  A. Thomason,et al.  Edge weights and vertex colours , 2004 .

[15]  Po-Yi Huang,et al.  Weighted-1-antimagic graphs of prime power order , 2012, Discret. Math..

[16]  Wei-Fan Wang,et al.  The Adjacent Vertex Distinguishing Total Chromatic Number of Graphs , 2010, 2010 4th International Conference on Bioinformatics and Biomedical Engineering.

[17]  Xiangen Chen On the adjacent vertex distinguishing total coloring numbers of graphs with Delta=3 , 2008, Discret. Math..

[18]  Jin Xu,et al.  Neighbor sum distinguishing total coloring of graphs embedded in surfaces of nonnegative Euler characteristic , 2016, J. Comb. Optim..

[19]  Xin Zhang,et al.  On edge colorings of 1-planar graphs , 2011, Inf. Process. Lett..

[20]  Huang DanJun,et al.  Adjacent vertex distinguishing total coloring of planar graphs with large maximum degree , 2012 .

[21]  Jakub PrzybyŁo Linear Bound on the Irregularity Strength and the Total Vertex Irregularity Strength of Graphs , 2008 .

[22]  Mariusz Wozniak,et al.  On the Total-Neighbor-Distinguishing Index by Sums , 2015, Graphs Comb..

[23]  Guanghui Wang,et al.  Neighbor sum distinguishing total colorings of planar graphs with maximum degree Δ , 2015, Discret. Appl. Math..

[24]  Wei-Fan Wang,et al.  The adjacent vertex distinguishing total coloring of planar graphs , 2014, J. Comb. Optim..

[25]  D. Král,et al.  Coloring plane graphs with independent crossings , 2010 .

[26]  Jakub Przybylo,et al.  Irregularity Strength of Regular Graphs , 2008, Electron. J. Comb..

[27]  Yan Guiying,et al.  Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz , 2014 .

[28]  Guanghui Wang,et al.  Neighbor sum distinguishing total colorings of planar graphs , 2015, J. Comb. Optim..

[29]  Noga Alon Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.

[30]  Jakub Przybylo,et al.  On a 1, 2 Conjecture , 2010, Discret. Math. Theor. Comput. Sci..

[31]  Xuding Zhu,et al.  Antimagic labelling of vertex weighted graphs , 2012, J. Graph Theory.