Historical isotope simulation using Reanalysis atmospheric data

[1] In this paper we present a multidecadal and global three-dimensional stable water isotope data set. This is accomplished by incorporating processes of the stable water isotopes into an atmospheric general circulation model and by applying a spectral nudging technique toward Reanalysis dynamical fields. Unlike the global model simulations forced only by sea surface temperature (SST), the dynamical fields used in the simulation are never far from observation because the spectral nudging technique constrains large-scale atmospheric circulation to that of observation, and therefore the simulated isotopic fields are reasonably accurate over the entire globe for daily to interannual time scales. As a case in point, it is revealed that the current approach reproduces the Arctic Oscillation much more correctly than the simulations forced only by SST, and consequently, the monthly isotopic variability better matches observations over midlatitudes to high latitudes in the Northern Hemisphere, especially Europe. This method is of great use in providing information in regions where in situ isotope observations are not available. Such information is required for a variety of biogeochemical, hydrological, and paleoclimate studies and as boundary and initial conditions for regional isotopic simulations.

[1]  P. Ciais,et al.  Deuterium and oxygen 18 in precipitation: Isotopic model, including mixed cloud processes , 1994 .

[2]  G. Meehl,et al.  Intercomparison of Atmospheric GCM Simulated Anomalies Associated with the 1997/98 El Nio. , 2002 .

[3]  W. Broecker,et al.  Simulations of the HDO and H2 18O atmospheric cycles using the NASA GISS general circulation model: The seasonal cycle for present-day conditions , 1987 .

[4]  S. Kanae,et al.  A quantitative analysis of short-term 18O variability with a Rayleigh-type isotope circulation model , 2003 .

[5]  Arun Kumar,et al.  NCEP dynamical seasonal forecast system 2000 , 2002 .

[6]  W. Dansgaard Stable isotopes in precipitation , 1964 .

[7]  Kevin Bowman,et al.  Importance of rain evaporation and continental convection in the tropical water cycle , 2007, Nature.

[8]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[9]  M. Kanamitsu,et al.  Dynamical Global Downscaling of Global Reanalysis , 2008 .

[10]  J. Jouzel,et al.  A general circulation model of water isotope cycles in the atmosphere , 1984, Nature.

[11]  J. Janowiak,et al.  The Global Precipitation Climatology Project (GPCP) combined precipitation dataset , 1997 .

[12]  Robert F. Adler,et al.  Tropical Rainfall Variability on Interannual-to-Interdecadal and Longer Time Scales Derived from the GPCP Monthly Product , 2007 .

[13]  M. Majoube Fractionnement en 180 entre la glace et la vapeur d'eau , 1971 .

[14]  H. Ehhalt Vertical Profiles of HTO, HDO, and H2O in the Troposphere , 1974 .

[15]  M. Stewart Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: Applications to atmospheric processes and evaporation of lakes , 1975 .

[16]  S. Moorthi,et al.  Relaxed Arakawa-Schubert - A parameterization of moist convection for general circulation models , 1992 .

[17]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[18]  D. Pollard,et al.  Simulation of stable water isotope variations by the GENESIS GCM for modern conditions , 2002 .

[19]  J. Jouzel,et al.  Global Climatic Interpretation of the Deuterium-Oxygen 18 Relationship , 1979 .

[20]  G. Bowen,et al.  Interpolating the isotopic composition of modern meteoric precipitation , 2003 .

[21]  J. Welker,et al.  Arctic and North Atlantic Oscillation phase changes are recorded in the isotopes (δ18O and δ13C) of Cassiope tetragona plants , 2005 .

[22]  S. Kanae,et al.  Iso-MATSIRO, a land surface model that incorporates stable water isotopes , 2006 .

[23]  S. Feldstein The Recent Trend and Variance Increase of the Annular Mode , 2002 .

[24]  M. Majoube Fractionnement en oxygène 18 et en deutérium entre l’eau et sa vapeur , 1971 .

[25]  T. Oki,et al.  Evaluation of two‐dimensional atmospheric water circulation fields in reanalyses by using precipitation isotopes databases , 2004 .

[26]  J. Jouzel,et al.  Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation , 1984 .

[27]  M. Kanamitsu,et al.  NCEP–DOE AMIP-II Reanalysis (R-2) , 2002 .

[28]  K. Yoshimura,et al.  Isotope ratios of precipitation and water vapor observed in Typhoon Shanshan , 2008 .

[29]  L. Merlivat Molecular diffusivities of H2 16O,HD16O, and H2 18O in gases , 1978 .

[30]  Bärbel Langmann,et al.  Simulation of δ18O in precipitation by the regional circulation model REMOiso , 2005 .

[31]  J. Gat Atmospheric water balance : the isotopic perspective , 2000 .

[32]  John Derber,et al.  Changes to the 1995 NCEP Operational Medium-Range Forecast Model Analysis-Forecast System , 1997 .

[33]  Yohei Matsui,et al.  Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions , 2008 .

[34]  Donald J. DePaolo,et al.  Isotopic fractionation of water during evaporation , 2003 .

[35]  J. Wallace,et al.  Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability* , 2000 .

[36]  S. Feldstein The Timescale, Power Spectra, and Climate Noise Properties of Teleconnection Patterns , 2000 .

[37]  F. Wentz,et al.  How Much More Rain Will Global Warming Bring? , 2007, Science.

[38]  G. Gayno,et al.  Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model , 2003 .

[39]  M. Heimann,et al.  Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years , 1998 .

[40]  J. Jouzel,et al.  Stable water isotopes in atmospheric general circulation models , 2000 .

[41]  I. Simmonds,et al.  Modeling δ18O in tropical precipitation and the surface ocean for present‐day climate , 2006 .

[42]  D. Schneider,et al.  Spatial covariance of water isotope records in a global network of ice cores spanning twentieth-century climate change , 2007 .

[43]  Winter and summer climate patterns in the European-Middle East during recent centuries as documented in a northern Red Sea coral record , 2006 .

[44]  Gavin A. Schmidt,et al.  Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere‐troposphere water exchange , 2005 .

[45]  Gavin A. Schmidt,et al.  Water isotope expressions of intrinsic and forced variability in a coupled ocean‐atmosphere model , 2007 .

[46]  A. Heymsfield,et al.  Water Isotope Ratios D/H, 18O/16O, 17O/16O in and out of Clouds Map Dehydration Pathways , 2003, Science.

[47]  Ian Simmonds,et al.  Associations between δ18O of Water and Climate Parameters in a Simulation of Atmospheric Circulation for 1979–95 , 2002 .

[48]  J. Jouzel Chapter 2 – ISOTOPES IN CLOUD PHYSICS: MULTIPHASE AND MULTISTAGE CONDENSATION PROCESSES , 1986 .

[49]  I. Fung,et al.  Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model , 2004 .

[50]  S. Gedzelman,et al.  Modeling the isotopic composition of precipitation , 1994 .

[51]  J. Gat OXYGEN AND HYDROGEN ISOTOPES IN THE HYDROLOGIC CYCLE , 1996 .

[52]  K. Wolter,et al.  Measuring the strength of ENSO events: How does 1997/98 rank? , 1998 .