The treewidth of proofs

Abstract So-called ordered variants of the classical notions of pathwidth and treewidth are introduced and proposed as proof theoretically meaningful complexity measures for the directed acyclic graphs underlying proofs. Ordered pathwidth is roughly the same as proof space and the ordered treewidth of a proof is meant to serve as a measure of how far it is from being treelike. Length-space lower bounds for k-DNF refutations are generalized to arbitrary infinity axioms and strengthened in that the space measure is relaxed to ordered treewidth.

[1]  Russell Impagliazzo,et al.  Time-space tradeoffs in resolution: superpolynomial lower bounds for superlinear space , 2012, STOC '12.

[2]  Samuel R. Buss,et al.  A Switching Lemma for Small Restrictions and Lower Bounds for k-DNF Resolution , 2004, SIAM J. Comput..

[3]  S. Cook,et al.  Logical Foundations of Proof Complexity: INDEX , 2010 .

[4]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[5]  Robert Ganian,et al.  On Digraph Width Measures in Parameterized Algorithmics , 2009, IWPEC.

[6]  Christos H. Papadimitriou,et al.  Searching and Pebbling , 1986, Theor. Comput. Sci..

[7]  Eli Ben-Sasson,et al.  Understanding Space in Proof Complexity: Separations and Trade-offs via Substitutions , 2011, ICS.

[8]  Jan Kra,et al.  Lower Bounds to the Size of Constant-depth Propositional Proofs , 1994 .

[9]  Gunnar Stålmarck Short resolution proofs for a sequence of tricky formulas , 2009, Acta Informatica.

[10]  Michael Alekhnovich,et al.  Space Complexity in Propositional Calculus , 2002, SIAM J. Comput..

[11]  Alexander A. Razborov,et al.  Propositional proof complexity , 2003, JACM.

[12]  Hans K. Buning,et al.  Propositional Logic: Deduction and Algorithms , 1999 .

[13]  Nathan Segerlind,et al.  The Complexity of Propositional Proofs , 2007, Bull. Symb. Log..

[14]  Toniann Pitassi,et al.  A new proof of the weak pigeonhole principle , 2000, Symposium on the Theory of Computing.

[15]  Nancy G. Kinnersley,et al.  The Vertex Separation Number of a Graph equals its Path-Width , 1992, Inf. Process. Lett..

[16]  Søren Riis A complexity gap for tree resolution , 2001, computational complexity.

[17]  Jan Krajícek Combinatorics of first order structures and propositional proof systems , 2004, Arch. Math. Log..

[18]  Alexander A. Razborov,et al.  On the AC0 Complexity of Subgraph Isomorphism , 2014, FOCS.

[19]  Nathan Segerlind Exponential separation between Res(k) and Res(k+1) for k leq varepsilonlogn , 2005, Inf. Process. Lett..

[20]  J. Kraj On the Weak Pigeonhole Principle , 2001 .

[21]  Eli Ben-Sasson,et al.  Size space tradeoffs for resolution , 2002, STOC '02.

[22]  Pavel Pudlák,et al.  Parity Games and Propositional Proofs , 2013, MFCS.

[23]  Søren Riis,et al.  On Relativisation and Complexity Gap , 2003, CSL.

[24]  Dániel Marx Can you beat treewidth? , 2007, FOCS.

[25]  J. Krajícek On the weak pigeonhole principle , 2001 .

[26]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[27]  Stefan Szeider,et al.  Revisiting Space in Proof Complexity: Treewidth and Pathwidth , 2013, MFCS.

[28]  Jochen Messner,et al.  On Minimal Unsatisfiability and Time-Space Trade-offs for k-DNF Resolution , 2009, ICALP.

[29]  Jakob Nordström Narrow Proofs May Be Spacious: Separating Space and Width in Resolution , 2009, SIAM J. Comput..

[30]  Yuval Filmus,et al.  From Small Space to Small Width in Resolution , 2014, STACS.

[31]  Albert Atserias,et al.  A combinatorial characterization of resolution width , 2008, J. Comput. Syst. Sci..

[32]  Barnaby Martin,et al.  Relativization makes contradictions harder for Resolution , 2013, Ann. Pure Appl. Log..

[33]  Jan Krajícek,et al.  Lower bounds to the size of constant-depth propositional proofs , 1994, Journal of Symbolic Logic.

[34]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[35]  Albert Atserias,et al.  Partially definable forcing and bounded arithmetic , 2015, Arch. Math. Log..

[36]  Robin Thomas,et al.  Directed Tree-Width , 2001, J. Comb. Theory, Ser. B.

[37]  Barnaby Martin,et al.  The limits of tractability in Resolution-based propositional proof systems , 2012, Ann. Pure Appl. Log..

[38]  Alexander A. Razborov,et al.  Electronic Colloquium on Computational Complexity, Report No. 75 (2001) Resolution Lower Bounds for the Weak Functional Pigeonhole Principle , 2001 .

[39]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[40]  Maria Luisa Bonet,et al.  Optimality of size-width tradeoffs for resolution , 2001, computational complexity.

[41]  Martin Grohe,et al.  The complexity of homomorphism and constraint satisfaction problems seen from the other side , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[42]  A. Wilkie,et al.  Counting problems in bounded arithmetic , 1985 .

[43]  Alexander A. Razborov,et al.  Pseudorandom generators hard for $k$-DNF resolution and polynomial calculus resolution , 2015 .

[44]  Alexander A. Razborov,et al.  Proof Complexity of Pigeonhole Principles , 2001, Developments in Language Theory.

[45]  Jacobo Torán,et al.  Space Bounds for Resolution , 1999, STACS.

[46]  Jakob Nordström On the interplay between proof complexity and SAT solving , 2015, SIGL.

[47]  Stephan Kreutzer,et al.  Digraph decompositions and monotonicity in digraph searching , 2008, Theor. Comput. Sci..

[48]  René Mazala,et al.  Infinite Games , 2001, Automata, Logics, and Infinite Games.