RTX Toxins Ambush Immunity’s First Cellular Responders

The repeats-in-toxin (RTX) family represents a unique class of bacterial exoproteins. The first family members described were toxins from Gram-negative bacterial pathogens; however, additional members included exoproteins with diverse functions. Our review focuses on well-characterized RTX family toxins from Aggregatibacter actinomycetemcomitans (LtxA), Mannheimia haemolytica (LktA), Bordetella pertussis (CyaA), uropathogenic Escherichia coli (HlyA), and Actinobacillus pleuropneumoniae (ApxIIIA), as well as the studies that have honed in on a single host cell receptor for RTX toxin interactions, the β2 integrins. The β2 integrin family is composed of heterodimeric members with four unique alpha subunits and a single beta subunit. β2 integrins are only found on leukocytes, including neutrophils and monocytes, the first responders to inflammation following bacterial infection. The LtxA, LktA, HlyA, and ApxIIIA toxins target the shared beta subunit, thereby targeting all types of leukocytes. Specific β2 integrin family domains are required for the RTX toxin’s cytotoxic activity and are summarized here. Research examining the domains of the RTX toxins required for cytotoxic and hemolytic activity is also summarized. RTX toxins attack and kill phagocytic immune cells expressing a single integrin family, providing an obvious advantage to the pathogen. The critical question that remains, can the specificity of the RTX-β2 integrin interaction be therapeutically targeted?

[1]  S. Kachlany,et al.  Aggregatibacter actinomycetemcomitans Leukotoxin (LtxA; Leukothera®): Mechanisms of Action and Therapeutic Applications , 2019, Toxins.

[2]  J. Sauer,et al.  The Extracellular Domain of the β2 Integrin β Subunit (CD18) Is Sufficient for Escherichia coli Hemolysin and Aggregatibacter actinomycetemcomitans Leukotoxin Cytotoxic Activity , 2019, mBio.

[3]  David González-Bullón,et al.  Membrane Permeabilization by Pore-Forming RTX Toxins: What Kind of Lesions Do These Toxins Form? , 2019, Toxins.

[4]  L. Schmitt,et al.  Type I Secretion Systems—One Mechanism for All? , 2019, Microbiology spectrum.

[5]  Angela C. Brown,et al.  Aggregatibacter actinomycetemcomitans leukotoxin causes activation of lymphocyte function‐associated antigen 1 , 2018, Cellular microbiology.

[6]  Angela C. Brown,et al.  Aggregatibacter actinomycetemcomitans Leukotoxin Is Delivered to Host Cells in an LFA-1-Indepdendent Manner When Associated with Outer Membrane Vesicles , 2018, Toxins.

[7]  Angela C. Brown,et al.  Receptor-Based Peptides for Inhibition of Leukotoxin Activity. , 2018, ACS infectious diseases.

[8]  A. Tibary,et al.  Precise gene editing paves the way for derivation of Mannheimia haemolytica leukotoxin-resistant cattle , 2016, Proceedings of the National Academy of Sciences.

[9]  M. Jakobsen,et al.  Inhibition of P2X Receptors Protects Human Monocytes against Damage by Leukotoxin from Aggregatibacter actinomycetemcomitans and α-Hemolysin from Escherichia coli , 2016, Infection and Immunity.

[10]  R. Welch Uropathogenic Escherichia coli-Associated Exotoxins , 2016, Microbiology spectrum.

[11]  R. Welch,et al.  Hemolysin of uropathogenic Escherichia coli: A cloak or a dagger? , 2016, Biochimica et biophysica acta.

[12]  J. Černý,et al.  Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3 , 2015, eLife.

[13]  S. Highlander,et al.  Acylation Enhances, but Is Not Required for, the Cytotoxic Activity of Mannheimia haemolytica Leukotoxin in Bighorn Sheep , 2015, Infection and Immunity.

[14]  Chuanxu Yang,et al.  Sialic Acid Residues Are Essential for Cell Lysis Mediated by Leukotoxin from Aggregatibacter actinomycetemcomitans , 2014, Infection and Immunity.

[15]  S. Kachlany,et al.  Leukotoxin kills rodent WBC by targeting leukocyte function associated antigen 1. , 2013, Comparative medicine.

[16]  Angela C. Brown,et al.  Aggregatibacter actinomycetemcomitans Leukotoxin Utilizes a Cholesterol Recognition/Amino Acid Consensus Site for Membrane Association* , 2013, The Journal of Biological Chemistry.

[17]  J. Enghild,et al.  Monodisperse and LPS-free Aggregatibacter actinomycetemcomitans leukotoxin: interactions with human β2 integrins and erythrocytes. , 2013, Biochimica et biophysica acta.

[18]  T. Vorup-Jensen,et al.  Leukotoxin from Aggregatibacter actinomycetemcomitans causes shrinkage and P2X receptor‐dependent lysis of human erythrocytes , 2012, Cellular microbiology.

[19]  S. Kachlany,et al.  Leukotoxin (Leukothera®) Targets Active Leukocyte Function Antigen-1 (LFA-1) Protein and Triggers a Lysosomal Mediated Cell Death Pathway* , 2012, The Journal of Biological Chemistry.

[20]  D. Ladant,et al.  The Bordetella pertussis adenylate cyclase toxin binds to T cells via LFA-1 and induces its disengagement from the immune synapse , 2011, The Journal of experimental medicine.

[21]  N. Balashova,et al.  Gangliosides Block Aggregatibacter Actinomycetemcomitans Leukotoxin (LtxA)-Mediated Hemolysis , 2010, Toxins.

[22]  N. Balashova,et al.  Anti-leukemia activity of a bacterial toxin with natural specificity for LFA-1 on white blood cells. , 2010, Leukemia research.

[23]  S. Kachlany,et al.  Aggregatibacter actinomycetemcomitans Leukotoxin , 2010, Journal of dental research.

[24]  E. Hewlett,et al.  Selective Translocation of the Bordetella pertussis Adenylate Cyclase Toxin across the Basolateral Membranes of Polarized Epithelial Cells* , 2010, The Journal of Biological Chemistry.

[25]  S. Srikumaran,et al.  Intact signal peptide of CD18, the β-subunit of β2-integrins, renders ruminants susceptible to Mannheimia haemolytica leukotoxin , 2009, Proceedings of the National Academy of Sciences.

[26]  N. Balashova,et al.  Aggregatibacter actinomycetemcomitans LtxC is required for leukotoxin activity and initial interaction between toxin and host cells. , 2009, Gene.

[27]  D. Desmecht,et al.  Porcine CD18 mediates Actinobacillus pleuropneumoniae ApxIII species-specific toxicity , 2009, Veterinary research.

[28]  N. Jørgensen,et al.  α-Hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis , 2009, Proceedings of the National Academy of Sciences.

[29]  D. Desmecht,et al.  Probing of Actinobacillus pleuropneumoniae ApxIIIA toxin-dependent cytotoxicity towards mammalian peripheral blood mononucleated cells , 2008, BMC Research Notes.

[30]  D. Knowles,et al.  beta(2) integrin Mac-1 is a receptor for Mannheimia haemolytica leukotoxin on bovine and ovine leukocytes. , 2008, Veterinary immunology and immunopathology.

[31]  J. Mašín,et al.  RTX cytotoxins recognize β2 integrin receptors through N-linked oligosaccharides , 2008, Proceedings of the National Academy of Sciences.

[32]  D. Speicher,et al.  Aggregatibacter actinomycetemcomitans leukotoxin requires β‐sheets 1 and 2 of the human CD11a β‐propeller for cytotoxicity , 2007, Cellular microbiology.

[33]  B. Walcheck,et al.  Integrin-EGF-3 domain of bovine CD18 is critical for Mannheimia haemolytica leukotoxin species-specific susceptibility. , 2007, FEMS microbiology letters.

[34]  S. Srikumaran,et al.  Monomeric Expression of Bovine β2-Integrin Subunits Reveals Their Role in Mannheimia haemolytica Leukotoxin-Induced Biological Effects , 2007, Infection and Immunity.

[35]  N. Balashova,et al.  Human CD18 Is the Functional Receptor for Aggregatibacter actinomycetemcomitans Leukotoxin , 2007, Infection and Immunity.

[36]  F. Goñi,et al.  The Calcium-binding C-terminal Domain of Escherichia coli α-Hemolysin Is a Major Determinant in the Surface-active Properties of the Protein* , 2007, Journal of Biological Chemistry.

[37]  D. Speicher,et al.  Aggregatibacter actinomycetemcomitans leukotoxin requires beta-sheets 1 and 2 of the human CD11a beta-propeller for cytotoxicity. , 2007, Cellular microbiology.

[38]  N. Balashova,et al.  Leukotoxin Confers Beta-Hemolytic Activity to Actinobacillus actinomycetemcomitans , 2006, Infection and Immunity.

[39]  Gina M. Donato,et al.  Macrophage cytotoxicity produced by adenylate cyclase toxin from Bordetella pertussis: more than just making cyclic AMP! , 2006, Molecular microbiology.

[40]  N. Mackman,et al.  The carboxy-terminal region of haemolysin 2001 is required for secretion of the toxin fromEscherichia coli , 1986, Molecular and General Genetics MGG.

[41]  T. Wassenaar,et al.  Binding of Escherichia coli Hemolysin and Activation of the Target Cells Is Not Receptor-dependent* , 2005, Journal of Biological Chemistry.

[42]  R. Benz,et al.  Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. , 2005, Biochemistry.

[43]  R. Donis,et al.  Mannheimia (Pasteurella) haemolytica Leukotoxin Binding Domain Lies within Amino Acids 1 to 291 of Bovine CD18 , 2005, Infection and Immunity.

[44]  P. Thumbikat,et al.  Characterization of Mannheimia (Pasteurella) haemolytica leukotoxin interaction with bovine alveolar macrophage beta2 integrins. , 2005, Veterinary research.

[45]  P. Thumbikat,et al.  Mapping of the Binding Site for Mannheimia haemolytica Leukotoxin within Bovine CD18 , 2005, Infection and Immunity.

[46]  P. Thumbikat,et al.  Recombinant expression of bovine LFA-1 and characterization of its role as a receptor for Mannheimia haemolytica leukotoxin. , 2005, Microbial pathogenesis.

[47]  E. Plow,et al.  Distinct Roles for the α and β Subunits in the Functions of Integrin αMβ2* , 2004, Journal of Biological Chemistry.

[48]  E. Plow,et al.  Distinct roles for the alpha and beta subunits in the functions of integrin alphaMbeta2. , 2005, The Journal of biological chemistry.

[49]  D. Ladant,et al.  Interaction of Bordetella pertussis Adenylate Cyclase with CD11b/CD18 , 2003, Journal of Biological Chemistry.

[50]  F. Goñi,et al.  A Receptor-binding Region in Escherichia coli α-Haemolysin* , 2003, Journal of Biological Chemistry.

[51]  P. Thumbikat,et al.  Biological effects of two genetically defined leukotoxin mutants of Mannheimia haemolytica. , 2003, Microbial pathogenesis.

[52]  F. Goñi,et al.  A receptor-binding region in Escherichia coli alpha-haemolysin. , 2003, The Journal of biological chemistry.

[53]  S. Srikumaran,et al.  Bovine CD18 Is Necessary and Sufficient To Mediate Mannheimia (Pasteurella) haemolytica Leukotoxin-Induced Cytolysis , 2002, Infection and Immunity.

[54]  Li Zhang,et al.  Structure-Function of the Putative I-domain within the Integrin β2 Subunit* , 2001, The Journal of Biological Chemistry.

[55]  P. Ricciardi-Castagnoli,et al.  The Adenylate Cyclase Toxin of Bordetella pertussis Binds to Target Cells via the αMβ2 Integrin (Cd11b/Cd18) , 2001, The Journal of experimental medicine.

[56]  F. Goñi,et al.  Glycophorin as a Receptor for Escherichia coliα-Hemolysin in Erythrocytes* , 2000, The Journal of Biological Chemistry.

[57]  L. Zhang,et al.  Structure-function of the putative I-domain within the integrin beta 2 subunit. , 2001, The Journal of biological chemistry.

[58]  J. Shabanowitz,et al.  Escherichia coli α-Hemolysin (HlyA) Is Heterogeneously Acylated in Vivo with 14-, 15-, and 17-Carbon Fatty Acids* , 2000, The Journal of Biological Chemistry.

[59]  J. F. Brown,et al.  Recombinant Bovine Interleukin-1β Amplifies the Effects of Partially Purified Pasteurella haemolyticaLeukotoxin on Bovine Neutrophils in a β2-Integrin-Dependent Manner , 2000, Infection and Immunity.

[60]  Jian Fei Wang,et al.  Lymphocyte Function-Associated Antigen 1 Is a Receptor for Pasteurella haemolytica Leukotoxin in Bovine Leukocytes , 2000, Infection and Immunity.

[61]  S. Srikumaran,et al.  The leukotoxin of Pasteurella haemolytica binds to beta(2) integrins on bovine leukocytes. , 1999, FEMS microbiology letters.

[62]  K. Clinkenbeard,et al.  Bovine CD18 identified as a species specific receptor for Pasteurella haemolytica leukotoxin. , 1999, Veterinary microbiology.

[63]  C. Weber,et al.  Specific activation of leukocyte beta2 integrins lymphocyte function-associated antigen-1 and Mac-1 by chemokines mediated by distinct pathways via the alpha subunit cytoplasmic domains. , 1999, Molecular biology of the cell.

[64]  P. Billings,et al.  Molecular and biochemical mechanisms of Pasteurella haemolytica leukotoxin-induced cell death. , 1998, Microbial pathogenesis.

[65]  Jian Fei Wang,et al.  RTX Toxins Recognize a β2 Integrin on the Surface of Human Target Cells* , 1997, The Journal of Biological Chemistry.

[66]  T. Springer,et al.  Characterization of lymphocyte function-associated antigen 1 (LFA-1)-deficient T cell lines: the alphaL and beta2 subunits are interdependent for cell surface expression. , 1997, Journal of immunology.

[67]  R. Welch,et al.  Escherichia coli hemolysin mutants with altered target cell specificity , 1996, Infection and immunity.

[68]  P. Stanley,et al.  Fatty acylation of two internal lysine residues required for the toxic activity of Escherichia coli hemolysin. , 1994, Science.

[69]  E. Lally,et al.  Identification and immunological characterization of the domain of Actinobacillus actinomycetemcomitans leukotoxin that determines its specificity for human target cells. , 1994, The Journal of biological chemistry.

[70]  J. Shabanowitz,et al.  Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. , 1994, Science.

[71]  R. Welch,et al.  Effects of temperature, time, and toxin concentration on lesion formation by the Escherichia coli hemolysin , 1994, Infection and immunity.

[72]  A. Eklund,et al.  Regulated expression of integrins and other adhesion molecules during differentiation of monocytes into macrophages. , 1994, Cellular immunology.

[73]  F. Haesebrouck,et al.  Actinobacillus pleuropneumoniae RTX-toxins: uniform designation of haemolysins, cytolysins, pleurotoxin and their genes. , 1993, Journal of general microbiology.

[74]  F. Goñi,et al.  Release of lipid vesicle contents by the bacterial protein toxin α-haemolysin , 1993 .

[75]  G. Salmond,et al.  Membrane traffic wardens and protein secretion in gram-negative bacteria. , 1993, Trends in biochemical sciences.

[76]  Philip J. Reeves,et al.  Membrance traffic wardens and protein secretion in Gram-negative bacteria , 1993 .

[77]  F. Goñi,et al.  Release of lipid vesicle contents by the bacterial protein toxin alpha-haemolysin. , 1993, Biochimica et biophysica acta.

[78]  D. Struck,et al.  Separable domains define target cell specificities of an RTX hemolysin from Actinobacillus pleuropneumoniae , 1992, Journal of bacteriology.

[79]  R. Welch,et al.  Identification of RTX toxin target cell specificity domains by use of hybrid genes , 1991, Infection and immunity.

[80]  J. Issartel,et al.  Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation , 1991, Nature.

[81]  R. Welch Pore‐forming cytolysins of Gram‐negative bacteria , 1991, Molecular microbiology.

[82]  P. Delepelaire,et al.  TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[83]  R. Welch,et al.  Calcium is required for binding of Escherichia coli hemolysin (HlyA) to erythrocyte membranes , 1990, Infection and immunity.

[84]  R. Welch,et al.  Domains of Escherichia coli hemolysin (HlyA) involved in binding of calcium and erythrocyte membranes , 1990, Infection and immunity.

[85]  R. Larson,et al.  Structure and Function of Leukocyte Integrins , 1990, Immunological reviews.

[86]  T. Springer,et al.  The leukocyte integrin LFA-1 reconstituted by cDNA transfection in a nonhematopoietic cell line is functionally active and not transiently regulated. , 1990, Cell regulation.

[87]  W. Goebel,et al.  Pore formation by the Escherichia coli hemolysin: evidence for an association-dissociation equilibrium of the pore-forming aggregates , 1989, Infection and immunity.

[88]  R. Welch,et al.  Alterations of amino acid repeats in the Escherichia coli hemolysin affect cytolytic activity and secretion. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[89]  N. Mackman,et al.  Escherichia coli haemolysin forms voltage-dependent ion channels in lipid membranes. , 1987, Biochimica et biophysica acta.

[90]  N. Mackman,et al.  Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores , 1986, Infection and immunity.

[91]  R. Welch,et al.  Nucleotide sequence of an Escherichia coli chromosomal hemolysin , 1985, Journal of bacteriology.

[92]  R. Welch,et al.  Escherichia coli hemolysin is released extracellularly without cleavage of a signal peptide , 1985, Journal of bacteriology.

[93]  W. Goebel,et al.  Transport of hemolysin across the outer membrane of Escherichia coli requires two functions , 1983, Journal of bacteriology.

[94]  T. Rees,et al.  A Filterable Hæmolysin from Escherichia coli , 1960, Nature.

[95]  Microbiology Spectrum , 2022 .