Mathematical Methods in Vehicle Dynamics

The dynamic analysis of deterministic and random vehicle vibrations and the consequences especially to passenger comfort requires an integrated study of three subproblems: (i) modeling and characterization of guideway roughness (ii) prediction of vehicle motion for traversal of a given guideway (iii) prediction or characterization of passenger response to vibration exposure.

[1]  J. K. Hedrick,et al.  Analysis, Design, and Optimization of High Speed Vehicle Suspensions Using State Variable Techniques , 1974 .

[2]  R. Grigorieff Numerik gewöhnlicher Differentialgleichungen , 1977 .

[3]  H. Schwetlick Numerische Lösung nichtlinearer Gleichungen , 1978 .

[4]  John V. Wait,et al.  Digital continuous-system simulation , 1978 .

[5]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[6]  W Hauschild The Application of Quasilinearization to the Limit Cycle Behaviour of the Nonlinear Wheel-Rail System , 1979 .

[7]  C. K. Yuen,et al.  Digital spectral analysis , 1979 .

[8]  E. O. Brigham,et al.  The Fast Fourier Transform , 1967, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  Leon Lapidus,et al.  Numerical Solution of Ordinary Differential Equations , 1972 .

[10]  Jack J. Dongarra,et al.  Matrix Eigensystem Routines — EISPACK Guide Extension , 1977, Lecture Notes in Computer Science.

[11]  Brian T. Smith,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[12]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[14]  B. Anderson The inverse problem of stationary covariance generation , 1969 .

[15]  S. D. Stearns,et al.  Digital Signal Analysis , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  G. R. Allen,et al.  Ride quality and international standard ISO 2631 (Guide for the evaluation of human exposure to whole-body vibration) , 1975 .

[17]  R. A. Smith Matrix Equation $XA + BX = C$ , 1968 .

[18]  C. C. Smith Literature Review - Automobile Ride Quality , 1980 .

[19]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[20]  R. Hull,et al.  INFLUENCE OF NONLINEAR WHEEL/RAIL CONTACT GEOMETRY ON STABILITY OF RAIL VEHICLES , 1977 .

[21]  Granino A. Korn,et al.  Electronic analog and hybrid computers , 1952 .

[22]  B. S. Garbow,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[23]  J. K. Hedrick,et al.  Influence of Axle Load, Track Gage, and Wheel Profile on Rail-Vehicle Hunting , 1977 .

[24]  A. KOUPAN,et al.  Zur numerischen Lösung der Ljapunovschen Matrizengleichung ΑT Ρ + PA = - Q / Numerical methods for solving the Liapunov matrix equation ΑT Ρ + PA = - Q , 1976 .

[25]  P. C. Müller,et al.  Berechnungsverfahren für stochastische Fahrzeugschwingungen , 1980 .

[26]  E. H. Law,et al.  The Application of Quasi-Linearization to the Prediction of Nonlinear Railway Vehicle Response , 1975 .