Fisher's linear discriminant analysis (FLDA) has been widely used in pattern classification due to its criterion, called Fisher's ratio, based on the ratio of between-class variance to within-class variance. Recently, a linear constrained discriminant analysis (LCDA) was developed for huperspectral image classification where Fisher's ratio was replaced with the ratio of inter-distance to intra-distance and the target signatures were constrained to orthogonal directions. This paper directly extends the FLDA to constrained Fisher's linear discriminant analysiss (CFLDA), which uses Fisher's ratio as a classification criterion. Since CFLDA is supervised which requires a set of training samples, this paper further extends the CFLDA to an unsupervised CFLDA (UCFLDA) by including a new unsupervised training sample generation algorithm to automatically produce a sample pool of training data to be used for CFLDA. In order to determine the number of classes, p, to be classified, a newly developed concept, called virtual dimensionality (VD) is used to estimate the p where a Neyman-Pearson-based eigen-analysis approach developed by Harsanyi, Farrand and Chang, called noise-whitened HFC (NWHFC)'s method, is implemented to find the VD. The experimental results have shown that the proposed UCFLDA perform effectively for HYDICE data and provides a promising unsupervised classification technique for hyperspectral imagery.
[1]
Qian Du,et al.
A linear constrained distance-based discriminant analysis for hyperspectral image classification
,
2001,
Pattern Recognit..
[2]
Chein-I Chang,et al.
Automatic spectral target recognition in hyperspectral imagery
,
2003
.
[3]
Hamid Soltanian-Zadeh,et al.
Optimal linear transformation for MRI feature extraction
,
1996,
IEEE Trans. Medical Imaging.
[4]
Richard O. Duda,et al.
Pattern classification and scene analysis
,
1974,
A Wiley-Interscience publication.
[5]
Chein-I Chang,et al.
Estimation of number of spectrally distinct signal sources in hyperspectral imagery
,
2004,
IEEE Transactions on Geoscience and Remote Sensing.
[6]
Chein-I. Chang.
Hyperspectral Imaging: Techniques for Spectral Detection and Classification
,
2003
.