Swarm-based descriptor combination and its application for image classification

In this paper, we deal with the descriptor combination problem in image classification tasks. This problem refers to the definition of an appropriate combination of image content descriptors that characterize different visual properties, such as color, shape and texture. In this paper, we propose to model the descriptor combination as a swarm-based optimization problem, which finds out the set of parameters that maximizes the classification accuracy of the Optimum-Path Forest (OPF) classifier. In our model,  a descriptor is seen as a pair composed of a feature extraction algorithm and a suitable distance function. Our strategy here is to combine distance scores defined by different descriptors, as well as to employ them to weight OPF edges, which connect samples in the feature space. An extensive evaluation of several swarm-based optimization techniques was performed. Experimental results have demonstrated the robustness of the proposed combination approach.

[1]  Jing J. Liang,et al.  A self-adaptive global best harmony search algorithm for continuous optimization problems , 2010, Appl. Math. Comput..

[2]  João Paulo Papa,et al.  Supervised pattern classification based on optimum‐path forest , 2009, Int. J. Imaging Syst. Technol..

[3]  L. Coelho,et al.  An improved harmony search algorithm for synchronization of discrete-time chaotic systems , 2009 .

[4]  Ricardo da Silva Torres,et al.  Learning to rank for content-based image retrieval , 2010, MIR '10.

[5]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[6]  Linda G. Shapiro,et al.  Computer Vision , 2001 .

[7]  Alexandre X. Falcão,et al.  Multimodal Pattern Recognition Through Particle Swarm Optimization , 2010 .

[8]  Mahamed G. H. Omran,et al.  Global-best harmony search , 2008, Appl. Math. Comput..

[9]  João Paulo Papa,et al.  Improving Image Classification through Descriptor Combination , 2012, 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images.

[10]  Jun'ichi Tsujii,et al.  Learning Combination Features with L1 Regularization , 2009, HLT-NAACL.

[11]  Jianhua Wu,et al.  Novel global harmony search algorithm for unconstrained problems , 2010, Neurocomputing.

[12]  Mandava Rajeswari,et al.  The variants of the harmony search algorithm: an overview , 2011, Artificial Intelligence Review.

[13]  Robert Neumayer,et al.  Evaluation of Feature Combination Approaches for Text Categorisation , 2011, ISMIS.

[14]  Dingxing Wang,et al.  Boosting image classification with LDA-based feature combination for digital photograph management , 2005, Pattern Recognit..

[15]  Z. Geem Music-Inspired Harmony Search Algorithm: Theory and Applications , 2009 .

[16]  Ricardo da Silva Torres,et al.  Comparative study of global color and texture descriptors for web image retrieval , 2012, J. Vis. Commun. Image Represent..

[17]  Jorge Stolfi,et al.  The image foresting transform: theory, algorithms, and applications , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Jefersson Alex dos Santos,et al.  Incorporating multiple distance spaces in optimum-path forest classification to improve feedback-based learning , 2012, Comput. Vis. Image Underst..

[19]  Xin-She Yang,et al.  Bat algorithm for multi-objective optimisation , 2011, Int. J. Bio Inspired Comput..

[20]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[21]  Mario A. Nascimento,et al.  A compact and efficient image retrieval approach based on border/interior pixel classification , 2002, CIKM '02.

[22]  Yong Yang,et al.  Evaluating Feature Combination in Object Classification , 2011, ISVC.

[23]  João Paulo Papa,et al.  Efficient supervised optimum-path forest classification for large datasets , 2012, Pattern Recognit..

[24]  Rajesh Kumar,et al.  An Intelligent Tuned Harmony Search algorithm for optimisation , 2012, Inf. Sci..

[25]  Debasish Ghose,et al.  Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications , 2006, Multiagent Grid Syst..

[26]  Fabio Augusto Faria,et al.  Uso de técnicas de aprendizagem para classificação e recuperação de imagens , 2010 .

[27]  João Paulo Papa,et al.  A New Variant of the Optimum-Path Forest Classifier , 2008, ISVC.

[28]  Quan Liu,et al.  An Orientation Independent Texture Descriptor for Image Retrieval , 2007, 2007 International Conference on Communications, Circuits and Systems.

[29]  Debasish Ghose,et al.  Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions , 2009, Swarm Intelligence.

[30]  Yong Man Ro,et al.  Texture Descriptors in MPEG-7 , 2001, CAIP.

[31]  Edward A. Fox,et al.  A genetic programming framework for content-based image retrieval , 2009, Pattern Recognit..

[32]  Dervis Karaboga,et al.  A modified Artificial Bee Colony algorithm for real-parameter optimization , 2012, Inf. Sci..

[33]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[34]  Ricardo da Silva Torres,et al.  Content-Based Image Retrieval: Theory and Applications , 2006, RITA.

[35]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[36]  Bo Liu,et al.  Improved particle swarm optimization combined with chaos , 2005 .

[37]  Ramin Zabih,et al.  Comparing images using color coherence vectors , 1997, MULTIMEDIA '96.

[38]  Esperanza García Gonzalo,et al.  The PSO family: deduction, stochastic analysis and comparison , 2009, Swarm Intelligence.

[39]  Sebastian Nowozin,et al.  On feature combination for multiclass object classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[40]  Yan Fu,et al.  Image classification based on multi-feature combination and PCA-RBaggSVM , 2010, 2010 IEEE International Conference on Progress in Informatics and Computing.

[41]  Liu Dong,et al.  Elite Particle Swarm Optimization with mutation , 2008, 2008 Asia Simulation Conference - 7th International Conference on System Simulation and Scientific Computing.