Raised Solubility in SnTe by GeMnTe2 Alloying Enables Converged Valence Bands, Low Thermal Conductivity, and High Thermoelectric Performance

[1]  K. Biswas,et al.  Enhanced Band Convergence and Ultra-low Thermal Conductivity Synergistically Lead to High Thermoelectric Performance in SnTe. , 2021, Angewandte Chemie.

[2]  Yongxin Qin,et al.  Realizing N-type SnTe Thermoelectrics with Competitive Performance through Suppressing Sn Vacancies. , 2021, Journal of the American Chemical Society.

[3]  G. Tan,et al.  Lead-free SnTe-based compounds as advanced thermoelectrics , 2021, Materials Today Physics.

[4]  Lidong Chen,et al.  High efficiency GeTe-based materials and modules for thermoelectric power generation , 2021, Energy & Environmental Science.

[5]  Zhiyu Chen,et al.  Routes for advancing SnTe thermoelectrics , 2020 .

[6]  J. Zou,et al.  Advanced Thermoelectric Design: From Materials and Structures to Devices. , 2020, Chemical reviews.

[7]  Di Li,et al.  Realizing high thermoelectric performance in eco-friendly SnTe via synergistic resonance levels, band convergence and endotaxial nanostructuring with Cu2Te , 2020, Nano Energy.

[8]  Jun Jiang,et al.  Effects of AgBiSe2 on thermoelectric properties of SnTe , 2020, Chemical Engineering Journal.

[9]  Yue Chen,et al.  Thermoelectric Enhancements in PbTe Alloys Due to Dislocation‐Induced Strains and Converged Bands , 2020, Advanced science.

[10]  Li-dong Zhao,et al.  Seeking new, highly effective thermoelectrics , 2020, Science.

[11]  Jinfeng Dong,et al.  High-performance electron-doped GeMnTe2: hierarchical structure and low thermal conductivity , 2019, Journal of Materials Chemistry A.

[12]  J. Zou,et al.  Realizing high thermoelectric properties of SnTe via synergistic band engineering and structure engineering , 2019, Nano Energy.

[13]  Lidong Chen,et al.  Recent Advances in Liquid‐Like Thermoelectric Materials , 2019, Advanced Functional Materials.

[14]  Jun Jiang,et al.  Ultralow Lattice Thermal Conductivity in SnTe by Manipulating the Electron–Phonon Coupling , 2019, The Journal of Physical Chemistry C.

[15]  Yue Chen,et al.  Lattice Strain Advances Thermoelectrics , 2019, Joule.

[16]  Wen Li,et al.  Promising cubic MnGeTe2 thermoelectrics , 2018, Science China Materials.

[17]  M. Kanatzidis,et al.  Excessively Doped PbTe with Ge-Induced Nanostructures Enables High-Efficiency Thermoelectric Modules , 2018, Joule.

[18]  M. Kanatzidis,et al.  High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe , 2018 .

[19]  Junyou Yang,et al.  Enhanced thermoelectric performance of SnTe: High efficient cation - anion Co-doping, hierarchical microstructure and electro-acoustic decoupling , 2018 .

[20]  G. J. Snyder,et al.  High Thermoelectric Performance in SnTe–AgSbTe2 Alloys from Lattice Softening, Giant Phonon–Vacancy Scattering, and Valence Band Convergence , 2018 .

[21]  Xiaofang Li,et al.  Recent progress towards high performance of tin chalcogenide thermoelectric materials , 2018 .

[22]  X. Su,et al.  Understanding the combustion process for the synthesis of mechanically robust SnSe thermoelectrics , 2018 .

[23]  Terry M. Tritt,et al.  Advances in thermoelectric materials research: Looking back and moving forward , 2017, Science.

[24]  Zhiwei Chen,et al.  Advances in Environment-Friendly SnTe Thermoelectrics , 2017 .

[25]  Liu Yong,et al.  New trends, strategies and opportunities in thermoelectric materials: A perspective , 2017 .

[26]  Junyou Yang,et al.  Synergistic effect by Na doping and S substitution for high thermoelectric performance of p-type MnTe , 2017 .

[27]  B. Ge,et al.  Promoting SnTe as an Eco‐Friendly Solution for p‐PbTe Thermoelectric via Band Convergence and Interstitial Defects , 2017, Advanced materials.

[28]  Haijun Wu,et al.  Strategy to optimize the overall thermoelectric properties of SnTe via compositing with its property-counter CuInTe2 , 2017 .

[29]  U. Waghmare,et al.  High Power Factor and Enhanced Thermoelectric Performance of SnTe-AgInTe2: Synergistic Effect of Resonance Level and Valence Band Convergence. , 2016, Journal of the American Chemical Society.

[30]  Junyou Yang,et al.  Multiple effects of Bi doping in enhancing the thermoelectric properties of SnTe , 2016 .

[31]  Ctirad Uher,et al.  Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe , 2016, Nature Communications.

[32]  B. Vishal,et al.  The origin of low thermal conductivity in Sn1−xSbxTe: phonon scattering via layered intergrowth nanostructures , 2016 .

[33]  M. Kanatzidis,et al.  Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe. , 2016, Journal of the American Chemical Society.

[34]  Woochul Kim,et al.  Band Degeneracy, Low Thermal Conductivity, and High Thermoelectric Figure of Merit in SnTe-CaTe Alloys , 2016 .

[35]  Yue Chen,et al.  Band and scattering tuning for high performance thermoelectric Sn1−xMnxTe alloys , 2015 .

[36]  Yue Chen,et al.  Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe , 2015 .

[37]  D. Negi,et al.  High Thermoelectric Performance and Enhanced Mechanical Stability of p-type Ge1–xSbxTe , 2015 .

[38]  Xinbing Zhao,et al.  Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials , 2015, Nature Communications.

[39]  M. Kanatzidis,et al.  Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe. , 2015, Journal of the American Chemical Society.

[40]  G. J. Snyder,et al.  High thermoelectric and mechanical performance in highly dense Cu2−xS bulks prepared by a melt-solidification technique , 2015 .

[41]  U. Waghmare,et al.  Mg Alloying in SnTe Facilitates Valence Band Convergence and Optimizes Thermoelectric Properties , 2015 .

[42]  M. Kanatzidis,et al.  SnTe–AgBiTe2 as an efficient thermoelectric material with low thermal conductivity , 2014 .

[43]  Tiejun Zhu,et al.  Point Defect Engineering of High‐Performance Bismuth‐Telluride‐Based Thermoelectric Materials , 2014 .

[44]  Hui Sun,et al.  High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. , 2014, Journal of the American Chemical Society.

[45]  K. Esfarjani,et al.  High thermoelectric performance by resonant dopant indium in nanostructured SnTe , 2013, Proceedings of the National Academy of Sciences.

[46]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[47]  G. J. Snyder,et al.  Stabilizing the Optimal Carrier Concentration for High Thermoelectric Efficiency , 2011, Advanced materials.

[48]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[49]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[50]  Min Zhou,et al.  Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering , 2008 .

[51]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[52]  J. Masek,et al.  Changes of Electronic Structure of SnTe Due to High Concentration of Sn Vacancies , 1997 .

[53]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[54]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[55]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[56]  H. Sitter,et al.  Structure of the second valence band in PbTe , 1977 .

[57]  R. Roy,et al.  Micro-indentation hardness variation as a function of composition for polycrystalline solutions in the systems PbS/PbTe, PbSe/PbTe, and PbS/PbSe , 1969 .

[58]  R. F. Brebrick,et al.  Anomalous Thermoelectric Power as Evidence for Two Valence Bands in SnTe , 1963 .

[59]  B. Xiao,et al.  Tactfully decoupling interdependent electrical parameters via interstitial defects for SnTe thermoelectrics , 2020 .

[60]  M. Kanatzidis,et al.  Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe , 2015 .