Utilising Sentinel-1’s orbital stability for efficient pre-processing of sigma nought backscatter

[1]  G. D. De Lannoy,et al.  Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps , 2021, The Cryosphere.

[2]  Michael E. Schaepman,et al.  Wide-Area Analysis-Ready Radar Backscatter Composites , 2021, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Francisco Ceba Vega,et al.  The normalised Sentinel-1 Global Backscatter Model, mapping Earth’s land surface with C-band microwaves , 2021, Scientific data.

[4]  P. Salamon,et al.  The New, Systematic Global Flood Monitoring Product of the Copernicus Emergency Management Service , 2021, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.

[5]  Adugna G. Mullissa,et al.  Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine , 2021, Remote. Sens..

[6]  Wolfgang Wagner,et al.  European Wide Forest Classification Based on Sentinel-1 Data , 2021, Remote. Sens..

[7]  Isabella Pfeil,et al.  Sentinel-1 Cross Ratio and Vegetation Optical Depth: A Comparison over Europe , 2020, Remote. Sens..

[8]  P. Matgen,et al.  DATA PROCESSING ARCHITECTURES FOR MONITORING FLOODS USING SENTINEL-1 , 2020 .

[9]  Cristian Rossi,et al.  Towards Sentinel-1 SAR Analysis-Ready Data: A Best Practices Assessment on Preparing Backscatter Data for the Cube , 2019, Data.

[10]  Federico Filipponi,et al.  Sentinel-1 GRD Preprocessing Workflow , 2019, Proceedings.

[11]  Nazzareno Pierdicca,et al.  Sentinel-1 InSAR Coherence to Detect Floodwater in Urban Areas: Houston and Hurricane Harvey as A Test Case , 2019, Remote. Sens..

[12]  Luca Brocca,et al.  Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing Assets and Overcoming Obstacles , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Wolfgang Wagner,et al.  Modelling and correcting azimuthal anisotropy in Sentinel-1 backscatter data , 2018, Remote Sensing Letters.

[14]  Dirk Geudtner,et al.  Sentinel 1 evolution: Sentinel-1C and -1D models , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[15]  Mariette Vreugdenhil,et al.  Dynamic Characterization of the Incidence Angle Dependence of Backscatter Using Metop ASCAT , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[16]  Liina Talgre,et al.  Relating Sentinel-1 Interferometric Coherence to Mowing Events on Grasslands , 2016, Remote. Sens..

[17]  W. Wagner,et al.  The use of Sentinel-1 for monitoring of soil moisture within the copernicus global land service , 2016 .

[18]  Simon Plank,et al.  Sentinel-1-based flood mapping: a fully automated processing chain , 2016 .

[19]  Michael Eineder,et al.  Interferometric Processing of Sentinel-1 TOPS Data , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Marc Rodriguez-Cassola,et al.  Role of the Orbital Tube in Interferometric Spaceborne SAR Missions , 2015, IEEE Geoscience and Remote Sensing Letters.

[21]  Malcolm Davidson,et al.  Sentinel-1 System capabilities and applications , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[22]  Wolfgang Wagner,et al.  Optimisation of global grids for high-resolution remote sensing data , 2014, Comput. Geosci..

[23]  H. Winsemius,et al.  Automated global water mapping based on wide-swath orbital synthetic-aperture radar , 2012 .

[24]  Malcolm Davidson,et al.  GMES Sentinel-1 mission , 2012 .

[25]  David Small,et al.  Flattening Gamma: Radiometric Terrain Correction for SAR Imagery , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Gulab Singh,et al.  Spaceborne InSAR Technique for Study of Himalayan Glaciers using ENVISAT ASAR and ERS Data , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[27]  Fabio Rocca,et al.  Diameters of the orbital tubes in long-term interferometric SAR surveys , 2004, IEEE Geoscience and Remote Sensing Letters.

[28]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .