Scaling and brain connectivity

[1]  I Spence,et al.  A TABLE OF EXPECTED STRESS VALUES FOR RANDOM RANKINGS IN NONMETRIC MULTIDIMENSIONAL SCALING. , 1973, Multivariate behavioral research.

[2]  Lawrence Hubert,et al.  SOME APPLICATIONS OF GRAPH THEORY AND RELATED NON‐METRIC TECHNIQUES TO PROBLEMS OF APPROXIMATE SERIATION: THE CASE OF SYMMETRIC PROXIMITY MEASURES , 1974 .

[3]  Herbert H. Stenson,et al.  GOODNESS OF FIT FOR RANDOM RANKINGS IN KRUSKAL'S NONMETRIC SCALING PROCEDURE * , 1969 .

[4]  Malcolm P. Young,et al.  Objective analysis of the topological organization of the primate cortical visual system , 1992, Nature.

[5]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[6]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[7]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .

[8]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[9]  J. Bullier,et al.  Anatomical segregation of two cortical visual pathways in the macaque monkey , 1990, Visual Neuroscience.

[10]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[11]  Jack W Scannell,et al.  The connectional organization of neural systems in the cat cerebral cortex , 1993, Current Biology.

[12]  D. Kendall,et al.  Mathematics in the Archaeological and Historical Sciences , 1971, The Mathematical Gazette.

[13]  M. Young The organization of neural systems in the primate cerebral cortex , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  J. Leeuw,et al.  An upper bound for sstress , 1986 .

[15]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .