Band gap dependent thermophotovoltaic device performance using the InGaAs and InGaAsP material system

Thermophotovoltaic cells with a range of band gaps are modeled under a variety of illumination conditions, including a range of source temperatures and a variable degree of spectral control. Thus, the balance between the requirements of high power densities and high efficiencies can be investigated. The influence of elevated cell temperatures, cell cooling, Auger recombination, and series resistances have been included, and all weight the optimum band gap thermophotovoltaic cell toward higher band gaps than the ∼0.5–0.6 eV conventional optimum. The cells have been modeled using fundamental physical parameters from the InGaAs and InGaAsP material system which accurately reproduce reported device performance and allow a comparison to theoretical limits.

[1]  Mowafak Al-Jassim,et al.  GaxIn1−xAs thermophotovoltaic converters , 1996 .

[2]  Timothy J. Coutts,et al.  A review of progress in thermophotovoltaic generation of electricity fna fna I began writing this pa , 1999 .

[3]  S. D. Link,et al.  Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control , 2004, IEEE Transactions on Electron Devices.

[4]  T. Ohshima,et al.  High-radiation-resistant InGaP, InGaAsP, and InGaAs solar cells for multijuction solar cells , 2001 .

[5]  T. H. Gfroerer,et al.  Temperature dependence of nonradiative recombination in low-band gap InxGa1−xAs/InAsyP1−y double heterostructures grown on InP substrates , 2003 .

[6]  C. Dey,et al.  Cooling of photovoltaic cells under concentrated illumination: a critical review , 2005 .

[7]  Edward J. Gratrix,et al.  Development of Front Surface, Spectral Control Filters with Greater Temperature Stability for Thermophotovoltaic Energy Conversion , 2007 .

[9]  R. W. Hoffman,et al.  High efficiency indium gallium arsenide photovoltaic devices for thermophotovoltaic power systems , 1994 .

[10]  C. Wang,et al.  Triple-axis X-ray Reciprocal Space Mapping of In(y)Ga(1-y)As Thermophotovoltaic Diodes Grown on (100) InP Substrates , 2008 .

[11]  G. Cody Theoretical maximum efficiencies for thermophotovoltaic devices , 1999 .

[12]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[13]  Kevin F. Brennan,et al.  Two-dimensional model of photon recycling in direct gap semiconductor devices , 1997 .

[14]  Timothy J. Coutts,et al.  Grid metallization and antireflection coating optimization for concentrator and one-sun photovoltaic solar cells , 1992 .

[15]  D. Depoy,et al.  Thermodynamic analysis of thermophotovoltaic efficiency and power density tradeoffs , 2001 .

[16]  Antonio Licciulli,et al.  The challenge of high-performance selective emitters for thermophotovoltaic applications , 2003 .

[17]  J. L. Balenzategui,et al.  Photon recycling and Shockley’s diode equation , 1997 .

[18]  David M. Wilt,et al.  0.52 eV InGaAs/InPAs Thermophotovoltaic Cells , 2004 .

[19]  Ramon U. Martinelli,et al.  Thermophotovoltaic system configurations and spectral control , 2003 .

[20]  T. H. Gfroerer,et al.  Efficient directional spontaneous emission from an InGaAs/InP heterostructure with an integral parabolic reflector , 1998 .

[21]  Carl R. Osterwald,et al.  High-performance concentrator tandem solar cells based on IR-sensitive bottom cells , 1991 .

[22]  Patrick Fay,et al.  Characterization and modeling of InGaAs/InAsP thermophotovoltaic converters under high illumination intensities , 2007 .

[23]  L. Fraas,et al.  Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells , 2003 .

[24]  Jeffery L. Gray,et al.  A simple parametric study of TPV system efficiency and output power density including a comparison of several TPV materials , 2008 .

[25]  James E. Avery,et al.  Commercial GaSb cell and circuit development for the Midnight Sun® TPV stove , 1999 .

[26]  M. Emziane,et al.  Optimization of InGaAs(P) photovoltaic cells lattice matched to InP , 2007 .

[27]  Effect of partial illumination on the open-circuit voltage of a solar cell , 1987 .

[28]  Myles A. Steiner,et al.  A monolithic three‐terminal GaInAsP/GaInAs tandem solar cell , 2009 .

[29]  M. Hudait,et al.  0.6-eV bandgap In/sub 0.69/Ga/sub 0.31/As thermophotovoltaic devices grown on InAs/sub y/P/sub 1-y/ step-graded buffers by molecular beam epitaxy , 2003, IEEE Electron Device Letters.

[30]  P. Asbeck Self‐absorption effects on the radiative lifetime in GaAs‐GaAlAs double heterostructures , 1977 .

[31]  Detlev Grützmacher,et al.  Cost estimate of electricity produced by TPV , 2003 .

[32]  C. S. Murray,et al.  The development of (InGa)As thermophotovoltaic cells on InP using strain-relaxed In(PAs) buffers , 2008 .

[33]  L. Woolf Optimum efficiency of single and multiple bandgap cells in thermophotovoltaic energy conversion , 1986 .

[34]  Steven A. Ringel,et al.  Metamorphic In0.7Al0.3As/In0.69Ga0.31As thermophotovoltaic devices grown on graded InAsyP1−y buffers by molecular beam epitaxy , 2009 .