The Observed Probability Distribution Function, Power Spectrum, and Correlation Function of the Transmitted Flux in the Lyα Forest

A sample of eight quasars observed at high resolution and signal-to-noise ratio is used to determine the transmitted flux probability distribution function (TFPDF), and the power spectrum and correlation function of the transmitted flux in the Lyα forest, in three redshift bins centered at z = 2.41, 3.00, and 3.89. All the results are presented in tabular form, with full error covariance matrices, to allow for comparisons with any numerical simulations and with other data sets. The observations are compared with a numerical simulation of the Lyα forest of a ΛCDM model with Ω = 0.4, known to agree with other large-scale structure observational constraints. There is excellent agreement for the TFPDF if the mean transmitted flux is adjusted to match the observations. A small difference between the observed and predicted TFPDF is found at high fluxes and low redshift, which may be due to the uncertain effects of fitting the spectral continuum. Using the numerical simulation, we show how the flux power spectrum can be used to recover the initial power spectrum of density fluctuations. From our sample of eight quasars, we measure the amplitude of the mass power spectrum to correspond to a linear variance per unit ln k of Δ(k) = 0.72 ± 0.09 at k = 0.04(km s-1)-1 and z = 3, and the slope of the power spectrum near the same k to be np = -2.55 ± 0.10 (statistical error bars). The results are statistically consistent with those of Croft et al., although our value for the rms fluctuation is lower by a factor of 0.75. For the ΛCDM model we use, the implied primordial slope is n = 0.93 ± 0.10, and the normalization is σ8 = 0.68 + 1.16(0.95 - n) ± 0.04.

[1]  O. Lahav,et al.  The Lyman α forest in a truncated hierarchical structure formation , 1999, astro-ph/9910177.

[2]  G. Bryan,et al.  The b Distribution of the Lyα Forest: Probing Cosmology and the Intergalactic Medium , 1999, astro-ph/9906459.

[3]  Paul J. Steinhardt,et al.  Cosmic Concordance and Quintessence , 1999, astro-ph/9901388.

[4]  G. Efstathiou,et al.  The thermal history of the intergalactic medium , 1999, astro-ph/9912432.

[5]  J. Shull,et al.  The Evolution of the Effective Equation of State of the IGM , 1999 .

[6]  Cambridge,et al.  Measuring the equation of state of the intergalactic medium , 1999, astro-ph/9906271.

[7]  R. Davé,et al.  Cosmological Limits on the Neutrino Mass from the Lyα Forest , 1999, astro-ph/9903335.

[8]  P. Mcdonald,et al.  Galaxy Formation and the Kinematics of Damped Lyα Systems , 1998, astro-ph/9809237.

[9]  M. Haehnelt,et al.  A first step towards a direct inversion of the Lyman forest in QSO spectra , 1998, astro-ph/9806109.

[10]  R. Croft,et al.  Closing In on ΩM: The Amplitude of Mass Fluctuations from Galaxy Clusters and the Lyα Forest , 1998, astro-ph/9810011.

[11]  R. Croft,et al.  The Power Spectrum of Mass Fluctuations Measured from the Lyα Forest at Redshift z = 2.5 , 1998, astro-ph/9809401.

[12]  P. Mcdonald,et al.  Measuring the Cosmological Geometry from the Lyα Forest along Parallel Lines of Sight , 1998, astro-ph/9807137.

[13]  L. Hui Recovery of the Shape of the Mass Power Spectrum from the Lyα Forest , 1998, astro-ph/9807068.

[14]  J. Prochaska,et al.  Protogalactic Disk Models of Damped Lyα Kinematics , 1998, astro-ph/9805293.

[15]  T. Abel,et al.  A “Minihalo” Model for the Lyman Limit Absorption Systems at High Redshift , 1997, astro-ph/9712119.

[16]  R. Croft,et al.  Recovery of the Power Spectrum of Mass Fluctuations from Observations of the Lyα Forest , 1997, astro-ph/9708018.

[17]  D. Weinberg,et al.  Constraints on the Effects of Locally Biased Galaxy Formation , 1997, astro-ph/9712192.

[18]  S. Burles,et al.  The Deuterium Abundance Towards Q1937-1009 , 1997, astro-ph/9712108.

[19]  L. Hui,et al.  Probing the Universe with the Lyα forest — I. Hydrodynamics of the low-density intergalactic medium , 1997, astro-ph/9706219.

[20]  Jason X. Prochaska,et al.  On the Kinematics of the Damped Lyman-α Protogalaxies , 1997, astro-ph/9704169.

[21]  A. Crotts,et al.  Reobservation of Close QSO Groups: The Size Evolution and Shape of Lyα Forest Absorbers , 1997, astro-ph/9702185.

[22]  D. Weinberg,et al.  A Lower Bound on the Cosmic Baryon Density , 1997, astro-ph/9701012.

[23]  L. Hui,et al.  Equation of state of the photoionized intergalactic medium , 1996, astro-ph/9612232.

[24]  W. Sargent,et al.  Keck High Resolution Spectroscopy of PKS 0123+257: Intrinsic Absorption in a Radio-Loud Quasar , 1996, astro-ph/9611010.

[25]  M. Norman,et al.  Spectral Analysis of the Lyα Forest in a Cold Dark Matter Cosmology , 1996, astro-ph/9609194.

[26]  L. Hernquist,et al.  The Opacity of the Lyα Forest and Implications for Ωb and the Ionizing Background , 1996, astro-ph/9612245.

[27]  Chung-Pei Ma Linear Power Spectra in Cold + Hot Dark Matter Models: Analytical Approximations and Applications , 1996, astro-ph/9605198.

[28]  D. Weinberg,et al.  The Lyman-Alpha Forest in the Cold Dark Matter Model , 1995, astro-ph/9509105.

[29]  R. Cen,et al.  The Lyα Forest from Gravitational Collapse in the Cold Dark Matter + Λ Model , 1995, astro-ph/9511013.

[30]  M. Norman,et al.  A Multispecies Model for Hydrogen and Helium Absorbers in Lyman-Alpha Forest Clouds , 1995, astro-ph/9508133.

[31]  R. Weymann,et al.  Common Lyman-Alpha Absorption Toward the Quasar Pair Q1343+2640A,B , 1994 .

[32]  R. Cen,et al.  Gravitational collapse of small scale structure as the origin of the Lyman alpha forest , 1994, astro-ph/9409017.

[33]  A. Crotts,et al.  Spectroscopy of the double quasars Q1343+266A, B: A new determination of the size of Lyman-alpha forest absorbers , 1994, astro-ph/9409007.

[34]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[35]  F. Bernardeau,et al.  Properties of the Cosmological Density Distribution Function , 1994, astro-ph/9403028.

[36]  M. Rees,et al.  Reionization and thermal evolution of a photoionized intergalactic medium. , 1994 .

[37]  A. Dekel,et al.  Evolution of one-point distributions from Gaussian initial fluctuations , 1993, astro-ph/9311028.

[38]  I. STATISTICAL ANALYSIS OF THE SSG QUASARS , 2022 .

[39]  H. Bi Lyman-alpha absorption spectrum of the primordial intergalactic medium , 1993 .

[40]  M. Rees,et al.  Tests for the minihalo model of the Lyman alpha forest , 1993 .

[41]  R. Carswell,et al.  The lyman forest of 0014+813 , 1992 .

[42]  P. Magain,et al.  A Spectroscopic Study of UM 673 A and B: On the Size of Lyman-Alpha Clouds , 1992 .

[43]  J. Ostriker,et al.  Lyman-alpha depression of the continuum from high-redshift quasars - A new technique applied in search of the Gunn-Peterson effect , 1991 .

[44]  C. McGill The redshift projection – II. Caustics and the Lyman α forest , 1990 .

[45]  A. Szalay,et al.  Lyman-Alpha Clouds as a Relic of Primordial Density Fluctuations , 1988 .

[46]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[47]  M. Rees Lyman absorption lines in quasar spectra: evidence for gravitationally-confined gas in dark minihaloes , 1986 .

[48]  J. Arons Low-mass protogalaxies and absorption lines in quasi-stellar objects. , 1972 .

[49]  John N. Bahcall,et al.  On the interaction of radiation from distant sources with the intervening medium. , 1965 .