The zebrafish as a model for behavioral studies.

Zebrafish genetics is developing at a rapid pace, and this opens up new approaches to understanding genetic control. This short review discusses recent results obtained in behavioral studies in this species, and also shows some promising ways of combining behavioral studies with modern genetic techniques. The zebrafish could provide behavioral models for understanding the neural and genetic control of species-specific behavioral patterns associated with feeding and predator avoidance. Careful experimentation may also reveal the genetic underpinning of simple cognitive processes such as habituation and memory, or lateralized control of behavior.

[1]  Á. Miklósi,et al.  Right eye use associated with decision to bite in zebrafish , 1999, Behavioural Brain Research.

[2]  N. Clayton,et al.  Analysing hippocampal function in transgenic mice: an ethological perspective , 1999, Trends in Neurosciences.

[3]  N. Tinbergen On aims and methods of Ethology , 2010 .

[4]  Á. Miklósi,et al.  Antipredator Behavior in Paradise Fish (Macropodus opercularis) Larvae: The Role of Genetic Factors and Paternal Influence , 1997, Behavior genetics.

[5]  E R Turnell,et al.  Mate choice in zebrafish (Danio rerio) analyzed with video-stimulus techniques. , 2003, The Biological bulletin.

[6]  Michael Levin,et al.  Left–right asymmetry in embryonic development: a comprehensive review , 2005, Mechanisms of Development.

[7]  J. Atema,et al.  Kin recognition in juvenile zebrafish (Danio rerio) based on olfactory cues. , 2003, The Biological bulletin.

[8]  G. Vallortigara,et al.  Roots of brain specializations: preferential left-eye use during mirror-image inspection in six species of teleost fish , 1999, Behavioural Brain Research.

[9]  Ilian T. Todorov,et al.  A short description of DL_POLY , 2006 .

[10]  J. Krause,et al.  Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio) , 2003, Naturwissenschaften.

[11]  M. D. Suboski,et al.  Visual and Olfactory Stimuli in Learned Release of Alarm Reactions by Zebra Danio Fish (Brachydanio rerio) , 1995, Neurobiology of Learning and Memory.

[12]  J. Ewert Neural mechanisms of prey-catching and avoidance behavior in the toad (Bufo bufo L.). , 1970, Brain, behavior and evolution.

[13]  Donald M. O’Malley,et al.  Prey Capture by Larval Zebrafish: Evidence for Fine Axial Motor Control , 2002, Brain, Behavior and Evolution.

[14]  D L Meyer,et al.  The Mauthner-initiated startle response in teleost fish. , 1977, The Journal of experimental biology.

[15]  W. Pfeiffer Alarm substances , 2005, Experientia.

[16]  E. Serra,et al.  Natural preference of zebrafish (Danio rerio) for a dark environment. , 1999, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[17]  K. Whitlock,et al.  Isolation and characterization of the laure olfactory behavioral mutant in the zebrafish, Danio rerio , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[18]  C. Carlson,et al.  Effect of cross-rearing on species identification in zebra fish and pearl danios. , 1982, Developmental psychobiology.

[19]  R. Spence,et al.  Male territoriality mediates density and sex ratio effects on oviposition in the zebrafish, Danio rerio , 2005, Animal Behaviour.

[20]  R. Menzel Searching for the memory trace in a mini-brain, the honeybee. , 2001, Learning & memory.

[21]  Jens Krause,et al.  Inter and intra‐population variation in shoaling and boldness in the zebrafish (Danio rerio) , 2003 .

[22]  Herwig Baier,et al.  Visual Prey Capture in Larval Zebrafish Is Controlled by Identified Reticulospinal Neurons Downstream of the Tectum , 2005, The Journal of Neuroscience.

[23]  A. Magurran,et al.  Sexual conflict as a consequence of ecology: evidence from guppy, Poecilia reticulata, populations in Trinidad , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[24]  M. Pyron Female preferences and male-male interactions in zebrafish (Danio rerio) , 2003 .

[25]  R. Colwill,et al.  Visual discrimination learning in zebrafish (Danio rerio) , 2005, Behavioural Processes.

[26]  Ian Q. Whishaw,et al.  A comparison of rats and mice in a swimming pool place task and matching to place task: Some surprising differences , 1995, Physiology & Behavior.

[27]  J. N. Kay,et al.  Forward Genetic Analysis of Visual Behavior in Zebrafish , 2005, PLoS genetics.

[28]  R. Andrew Comparative Vertebrate Lateralization: The earliest origins and subsequent evolution of lateralization , 2002 .

[29]  Á. Miklósi,et al.  The ontogeny of antipredator behavior in paradise fish larvae (Macropodus opercularis) IV. The effect of exposure to siblings. , 1997, Developmental psychobiology.

[30]  M. Halpern,et al.  Leaning to the left: laterality in the zebrafish forebrain , 2003, Trends in Neurosciences.

[31]  L. Rogers Comparative Vertebrate Lateralization: Preface , 2002 .

[32]  I. Rodriguez,et al.  Olfactory expression of a single and highly variable V1r pheromone receptor-like gene in fish species. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Donald M. O’Malley,et al.  Prey Tracking by Larval Zebrafish: Axial Kinematics and Visual Control , 2005, Brain, Behavior and Evolution.

[34]  Donald B. White,et al.  A simple spatial alternation task for assessing memory function in zebrafish , 2002, Behavioural Processes.

[35]  Á. Miklósi,et al.  Early asymmetries in the behaviour of zebrafish larvae , 2004, Behavioural Brain Research.

[36]  Á. Miklósi,et al.  Behavioural Lateralisation of the Tetrapod Type in the Zebrafish (Brachydanio Rerio) , 1997, Physiology & Behavior.

[37]  E. Gahtan,et al.  Probing neural circuits in the zebrafish: a suite of optical techniques. , 2003, Methods.

[38]  L. Dill,et al.  Monopolization of food by zebrafish (Danio rerio) increases in risky habitats , 2002 .

[39]  Á. Miklósi,et al.  Role of right hemifield in visual control of approach to target in zebrafish , 2001, Behavioural Brain Research.

[40]  A. Magurran,et al.  Development of predator defences in fishes , 1994, Reviews in Fish Biology and Fisheries.

[41]  M. Ryan,et al.  Learned Social Preference in Zebrafish , 2004, Current Biology.

[42]  Stephen W. Wilson,et al.  fsi Zebrafish Show Concordant Reversal of Laterality of Viscera, Neuroanatomy, and a Subset of Behavioral Responses , 2005, Current Biology.

[43]  John E. Dowling,et al.  Behavioral screening for cocaine sensitivity in mutagenized zebrafish , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  R. Andrew,et al.  Eye use during viewing a reflection: Behavioural lateralisation in zebrafish larvae , 2006, Behavioural Brain Research.