Algorithm Theoretical Basis Document for GEDI Footprint Aboveground Biomass Density

The Global Ecosystem Dynamics Investigation (GEDI) lidar is a multibeam laser altimeter on the International Space Station (ISS). GEDI is the first spaceborne instrument designed to measure vegetation height and to quantify aboveground carbon stocks in temperate and tropical forests and woodlands. This document describes the algorithm theoretical basis underpinning the development of the GEDI Level‐4A (GEDI04_A) footprint aboveground biomass density (AGBD) data product. The GEDI04_A data product contains estimates of AGBD for individual GEDI footprints and associated prediction intervals. The algorithm uses GEDI02_A relative height metrics and 13 linear models to predict AGBD in 32 combinations of plant functional type and world region within the observation limits of the ISS. GEDI04_A models for the release 1 and release 2 data products were developed using 8,587 quality‐filtered simulated GEDI waveforms associated with field estimates of AGBD in 21 countries. Although this is the most geographically comprehensive data available for the development of AGBD models using lidar remote sensing, important regions are underrepresented, including the forests of continental Asia, deciduous broadleaf forests and savannas of the dry tropics, and evergreen broadleaf forests north of Australia. We describe the scientific and statistical assumptions required to develop globally representative estimates of AGBD using GEDI lidar, including generalization beyond training data, and exclusion of GEDI02_A observations that do not meet requirements of the GEDI04_A algorithm. The footprint‐level predictions generated by this process provide globally comprehensive estimates of AGBD. These footprint‐level predictions are a prerequisite for the GEDI04_B gridded AGBD data product.

[1]  S. Goetz,et al.  GEDI launches a new era of biomass inference from space , 2022, Environmental Research Letters.

[2]  Joanne C. White,et al.  Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission , 2022, Remote Sensing of Environment.

[3]  Sassan Saatchi,et al.  Ecosystem Sciences with NISAR , 2021, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.

[4]  Andreas Huth,et al.  Tree Crowns Cause Border Effects in Area-Based Biomass Estimations from Remote Sensing , 2021, Remote. Sens..

[5]  Jan Dirk Wegner,et al.  Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles , 2021, Remote Sensing of Environment.

[6]  B. Poulter,et al.  Global Ecosystem Demography Model (ED-global v1.0): Development, Calibration and Evaluation for NASA's Global Ecosystem Dynamics Investigation (GEDI) , 2020 .

[7]  Sruthi M. Krishna Moorthy,et al.  Terrestrial laser scanning in forest ecology: Expanding the horizon , 2020 .

[8]  M. Disney,et al.  New 3D measurements of large redwood trees for biomass and structure , 2020, Scientific Reports.

[9]  N. Picard,et al.  Spatial validation reveals poor predictive performance of large-scale ecological mapping models , 2020, Nature Communications.

[10]  Sean P. Healey,et al.  Highly Local Model Calibration with a New GEDI LiDAR Asset on Google Earth Engine Reduces Landsat Forest Height Signal Saturation , 2020, Remote. Sens..

[11]  M. Hansen,et al.  Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series , 2020 .

[12]  Sorin C. Popescu,et al.  Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example , 2020, Remote. Sens..

[13]  Marc Simard,et al.  Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California , 2020, Remote Sensing of Environment.

[14]  R. Dubayah,et al.  The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography , 2020, Science of Remote Sensing.

[15]  Lammert Kooistra,et al.  Non-destructive tree volume estimation through quantitative structure modelling: Comparing UAV laser scanning with terrestrial LIDAR , 2019, Remote Sensing of Environment.

[16]  Göran Ståhl,et al.  Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data , 2019, Remote Sensing of Environment.

[17]  Göran Ståhl,et al.  Statistical properties of hybrid estimators proposed for GEDI—NASA’s global ecosystem dynamics investigation , 2019, Environmental Research Letters.

[18]  M. Herold,et al.  The Importance of Consistent Global Forest Aboveground Biomass Product Validation , 2019, Surveys in Geophysics.

[19]  Christoph Eck,et al.  New Opportunities for Forest Remote Sensing Through Ultra-High-Density Drone Lidar , 2019, Surveys in Geophysics.

[20]  Mathias Disney,et al.  Innovations in Ground and Airborne Technologies as Reference and for Training and Validation: Terrestrial Laser Scanning (TLS) , 2019, Surveys in Geophysics.

[21]  Stephanie A. Bohlman,et al.  Tropical tree height and crown allometries for the Barro Colorado Nature Monument, Panama: a comparison of alternative hierarchical models incorporating interspecific variation in relation to life history traits , 2019, Biogeosciences.

[22]  Xiaoli Sun,et al.  The GEDI Simulator: A Large‐Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions , 2019, Earth and space science.

[23]  S. Roxburgh,et al.  A revised above-ground maximum biomass layer for the Australian continent , 2019, Forest Ecology and Management.

[24]  M. Herold,et al.  Estimation of above‐ground biomass of large tropical trees with terrestrial LiDAR , 2017 .

[25]  Wenli Huang,et al.  Implications of allometric model selection for county-level biomass mapping , 2017, Carbon Balance and Management.

[26]  Carsten F. Dormann,et al.  Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure , 2017 .

[27]  Hans Pretzsch,et al.  Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate , 2017 .

[28]  Jukka Heikkonen,et al.  Estimating the prediction performance of spatial models via spatial k-fold cross validation , 2017, Int. J. Geogr. Inf. Sci..

[29]  J. Trochta,et al.  3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR , 2017, PloS one.

[30]  Daniel S Falster,et al.  Testing the generality of above‐ground biomass allometry across plant functional types at the continent scale , 2016, Global change biology.

[31]  Ryutaro Tateishi,et al.  Estimation of Tropical Forest Structural Characteristics Using ALOS-2 SAR Data , 2016 .

[32]  E. Næsset,et al.  Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation , 2016, Forest Ecosystems.

[33]  R. Dubayah,et al.  Assessing the general patterns of forest structure: quantifying tree and forest allometric scaling relationships in the United States , 2015 .

[34]  Terje Gobakken,et al.  Modeling Aboveground Biomass in Dense Tropical Submontane Rainforest Using Airborne Laser Scanner Data , 2015, Remote. Sens..

[35]  Scott J. Goetz,et al.  The Global Ecosystem Dynamics Investigation , 2014 .

[36]  David Kenfack,et al.  Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks , 2014 .

[37]  B. Nelson,et al.  Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.

[38]  Vincent Bretagnolle,et al.  Spatial leave‐one‐out cross‐validation for variable selection in the presence of spatial autocorrelation , 2014 .

[39]  S. Goetz,et al.  Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps , 2013, Carbon Balance and Management.

[40]  Thomas Esch,et al.  Urban Footprint Processor—Fully Automated Processing Chain Generating Settlement Masks From Global Data of the TanDEM-X Mission , 2013, IEEE Geoscience and Remote Sensing Letters.

[41]  R. Nelson,et al.  Comparison of precision of biomass estimates in regional field sample surveys and airborne LiDAR-assisted surveys in Hedmark County, Norway , 2013 .

[42]  S. Goetz,et al.  A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing , 2013 .

[43]  D. Clark,et al.  Tropical forest biomass estimation and the fallacy of misplaced concreteness , 2012 .

[44]  M. Lefsky,et al.  Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: Overcoming problems of high biomass and persistent cloud , 2012 .

[45]  S. Saatchi,et al.  Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass , 2011 .

[46]  J. Bryan Blair,et al.  Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion , 2011 .

[47]  R. B. Jackson,et al.  A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.

[48]  John R. Moore,et al.  Allometric equations to predict the total above-ground biomass of radiata pine trees , 2010, Annals of Forest Science.

[49]  D. A. King,et al.  Height-diameter allometry of tropical forest trees , 2010 .

[50]  Klaus Scipal,et al.  The BIOMASS mission — An ESA Earth Explorer candidate to measure the BIOMASS of the earth's forests , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[51]  M. Hansen,et al.  Quantification of global gross forest cover loss , 2010, Proceedings of the National Academy of Sciences.

[52]  S. Wofsy,et al.  Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability , 2010, Proceedings of the National Academy of Sciences.

[53]  G. B. Williamson,et al.  Measuring wood specific gravity...Correctly. , 2010, American journal of botany.

[54]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[55]  G. Hurtt,et al.  Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica , 2009 .

[56]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[57]  R. Nelson,et al.  Regression Estimation Following the Square-Root Transformation of the Response , 2008, Forest Science.

[58]  X. Guo,et al.  Canadian national biomass equations: new parameter estimates that include British Columbia data , 2008 .

[59]  P. Muukkonen,et al.  Generalized allometric volume and biomass equations for some tree species in Europe , 2007, European Journal of Forest Research.

[60]  N. Coops,et al.  Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR , 2007, Trees.

[61]  W. Cohen,et al.  Estimates of forest canopy height and aboveground biomass using ICESat , 2005 .

[62]  W. Walker,et al.  Mapping forest structure for wildlife habitat analysis using waveform lidar: Validation of montane ecosystems , 2005 .

[63]  G. Foody,et al.  Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions , 2003 .

[64]  R. Birdsey,et al.  National-Scale Biomass Estimators for United States Tree Species , 2003, Forest Science.

[65]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[66]  W. Cohen,et al.  Lidar remote sensing of above‐ground biomass in three biomes , 2002 .

[67]  R. Dubayah,et al.  Estimation of tropical forest structural characteristics using large-footprint lidar , 2002 .

[68]  Stephanie A. Bohlman,et al.  Quantifying the deciduousness of tropical forest canopies under varying climates , 2000 .

[69]  J. Blair,et al.  Modeling laser altimeter return waveforms over complex vegetation using high‐resolution elevation data , 1999 .

[70]  M. Honzak,et al.  Tropical Forest Biomass Density Estimation Using JERS-1 SAR: Seasonal Variation, Confidence Limits, and Application to Image Mosaics , 1998 .

[71]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .

[72]  P. Snowdon,et al.  A ratio estimator for bias correction in logarithmic regressions , 1991 .

[73]  James W. Flewelling,et al.  Multiplicative Regression with Lognormal Errors , 1981 .

[74]  G. Baskerville Use of Logarithmic Regression in the Estimation of Plant Biomass , 1972 .

[75]  E. Mayr Wallace's Line in the Light of Recent Zoogeographic Studies , 1944, The Quarterly Review of Biology.

[76]  M. Herold,et al.  Aboveground Woody Biomass Product Validation Good Practices Protocol , 2021 .

[77]  S. Schulze Estimating Biomass And Biomass Change Of Tropical Forests , 2016 .

[78]  Guoqing Sun,et al.  Evaluating Prospects for Improved Forest Parameter Retrieval From Satellite LiDAR Using a Physically-Based Radiative Transfer Model , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[79]  R. Nelson,et al.  Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway , 2011 .

[80]  Mark H. Hansen,et al.  Investigation into calculating tree biomass and carbon in the FIADB using a biomass expansion factor approach , 2009 .

[81]  D. Clark,et al.  Abundance, growth and mortality of very large trees in neotropical lowland rain forest , 1996 .