High quantum efficiency dots-in-a-well quantum dot infrared photodetectors with AlGaAs confinement enhancing layer

We demonstrate the high quantum efficiency InAs∕In0.15Ga0.85As dots-in-a-well (DWELL) quantum dot infrared photodetectors (QDIPs). A thin Al0.3Ga0.7As layer was inserted on top of the InAs quantum dots (QDs) to enhance the confinement of QD states in the DWELL structure. The better confinement of the electronic states increases the oscillation strength of the infrared absorption. The higher excited state energy also improves the escape probability of the photoelectrons. Compared with the conventional DWELL QDIPs, the quantum efficiency increases more than 20 times and the detectivity is about an order of magnitude higher at 77K.

[1]  Wei Zhang,et al.  Quantum dot infrared photodetectors: Comparison of experiment and theory , 2005 .

[2]  S. Krishna,et al.  Normal-incidence InAs/In0.15Ga0.85As quantum dots-in-a-well detector operating in the long-wave infrared atmospheric window (8–12 μm) , 2004 .

[3]  Chien-Ping Lee,et al.  InAs/GaAs quantum dot infrared photodetectors with different growth temperatures , 2003 .

[4]  Chennupati Jagadish,et al.  Influence of quantum well and barrier composition on the spectral behavior of InGaAs quantum dots-in-a-well infrared photodetectors , 2007 .

[5]  Hsien-Shun Wu,et al.  Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer , 2001 .

[6]  Joe C. Campbell,et al.  Inas quantum dot infrared photodetectors with In0.15Ga0.85As strain-relief cap layers , 2002 .

[7]  Yia-Chung Chang,et al.  Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array☆ , 2007 .

[8]  Subhananda Chakrabarti,et al.  Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature , 2005 .

[9]  Wei Zhang,et al.  High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature , 2007 .

[10]  Andreas Stintz,et al.  Influence of Si doping on the performance of quantum dots-in-well photodetectors , 2006 .

[11]  Jarrod Vaillancourt,et al.  Temperature-dependent photoresponsivity and high-temperature (190K) operation of a quantum dot infrared photodetector , 2007 .

[12]  Luke R. Wilson,et al.  Enhancing the dot density in quantum dot infrared photodetectors via the incorporation of antimony , 2007 .

[13]  Sheng S. Li,et al.  In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K , 2003 .

[14]  S.B. Rafol,et al.  High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity , 2004, IEEE Photonics Technology Letters.

[15]  A. Madhukar,et al.  Tailoring detection bands of InAs quantum-dot infrared photodetectors using InxGa1−xAs strain-relieving quantum wells , 2001 .

[16]  Sanjay Krishna Quantum dots-in-a-well infrared photodetectors , 2005 .

[17]  Andreas Stintz,et al.  High-responsivity, normal-incidence long-wave infrared (λ∼7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector , 2002 .

[18]  Andreas Stintz,et al.  Resonant cavity enhanced InAs∕In0.15Ga0.85As dots-in-a-well quantum dot infrared photodetector , 2007 .

[19]  E. Towe,et al.  A five-period normal-incidence (In, Ga)As/GaAs quantum-dot infrared photodetector , 1999 .

[20]  Z. G. Wang,et al.  Photoluminescence study of self-assembled InAs/GaAs quantum dots covered by an InAlAs and InGaAs combination layer , 2002 .