ISWI and CHD chromatin remodelers bind to promoters but act in gene bodies

ATP-dependent nucleosome remodelers influence genetic processes by altering nucleosome occupancy, positioning, and composition. In vitro, Saccharomyces cerevisiae ISWI and CHD remodelers require ∼30–85 bp of extranucleosomal DNA to reposition nucleosomes, but linker DNA in S. cerevisiae averages <20 bp. To address this discrepancy between in vitro and in vivo observations, we have mapped the genomic distributions of the yeast Isw1, Isw2, and Chd1 remodelers at base-pair resolution on native chromatin. Although these remodelers act in gene bodies, we find that they are also highly enriched at nucleosome-depleted regions (NDRs), where they bind to extended regions of DNA adjacent to particular transcription factors. Surprisingly, catalytically inactive remodelers show similar binding patterns. We find that remodeler occupancy at NDRs and gene bodies is associated with nucleosome turnover and transcriptional elongation rate, suggesting that remodelers act on regions of transient nucleosome unwrapping or depletion within gene bodies subsequent to transcriptional elongation.

[1]  B. Bernstein,et al.  Genetic Events That Shape the Cancer Epigenome , 2012, Science.

[2]  Keunsoo Kang,et al.  Hrp3 controls nucleosome positioning to suppress non‐coding transcription in eu‐ and heterochromatin , 2012, The EMBO journal.

[3]  S. Biggins,et al.  Centromere identity is specified by a single centromeric nucleosome in budding yeast , 2007, Proceedings of the National Academy of Sciences.

[4]  A. Imbalzano,et al.  The Chd family of chromatin remodelers. , 2007, Mutation research.

[5]  Aviv Regev,et al.  The Role of Nucleosome Positioning in the Evolution of Gene Regulation , 2010, PLoS biology.

[6]  C. Jin,et al.  Nucleosome stability mediated by histone variants H3.3 and H2A.Z. , 2007, Genes & development.

[7]  R Rothstein,et al.  A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. , 1998, Molecular cell.

[8]  H. Madhani,et al.  Mechanisms that Specify Promoter Nucleosome Location and Identity , 2009, Cell.

[9]  J. Workman,et al.  Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange , 2012, Nature Structural &Molecular Biology.

[10]  B. Burrows IT and IS , 1983 .

[11]  Jerry L. Workman,et al.  Nucleosome displacement in transcription , 1993, Cell.

[12]  Donna M. Martin,et al.  Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome , 2010, American journal of medical genetics. Part A.

[13]  Nicholas A. Kent,et al.  Chromatin particle spectrum analysis: a method for comparative chromatin structure analysis using paired-end mode next-generation DNA sequencing , 2010, Nucleic acids research.

[14]  Toshio Tsukiyama,et al.  Antagonistic forces that position nucleosomes in vivo , 2006, Nature Structural &Molecular Biology.

[15]  M. Zofall,et al.  Functional Role of Extranucleosomal DNA and the Entry Site of the Nucleosome in Chromatin Remodeling by ISW2 , 2004, Molecular and Cellular Biology.

[16]  B. Pugh,et al.  Comprehensive Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution , 2011, Cell.

[17]  Alok J. Saldanha,et al.  Java Treeview - extensible visualization of microarray data , 2004, Bioinform..

[18]  P. Georgel,et al.  CHD proteins: a diverse family with strong ties. , 2007, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[19]  M. Adams,et al.  Integrative genomic analysis of human ribosomal DNA , 2011, Nucleic acids research.

[20]  Karl Ekwall,et al.  CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe , 2012, The EMBO journal.

[21]  Geoffrey J. Barton,et al.  Identification of multiple distinct Snf2 subfamilies with conserved structural motifs , 2006, Nucleic acids research.

[22]  J. Lieb,et al.  In Vivo Effects of Histone H3 Depletion on Nucleosome Occupancy and Position in Saccharomyces cerevisiae , 2012, PLoS genetics.

[23]  Oliver J. Rando,et al.  Chromatin remodelling at promoters suppresses antisense transcription , 2007, Nature.

[24]  A. Kristjuhan,et al.  Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo , 2004, The EMBO journal.

[25]  J. Boeke,et al.  Genome-wide identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive mutant. , 2005, Genes & development.

[26]  Michael D. Stone,et al.  Dynamics of nucleosome remodelling by individual ACF complexes , 2009, Nature.

[27]  S. Henikoff,et al.  Genome-scale profiling of histone H3.3 replacement patterns , 2005, Nature Genetics.

[28]  G. Hartzog,et al.  Histone H3K4 and K36 Methylation, Chd1 and Rpd3S Oppose the Functions of Saccharomyces cerevisiae Spt4–Spt5 in Transcription , 2010, Genetics.

[29]  Sándor Pongor,et al.  DNA analysis servers: plot.it, bend.it, model.it and IS , 2003, Nucleic Acids Res..

[30]  S. Schreiber,et al.  Global nucleosome occupancy in yeast , 2004, Genome Biology.

[31]  G. Narlikar,et al.  The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing , 2006, Nature Structural &Molecular Biology.

[32]  N. Barkai,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Widespread remodeling of mid-coding sequence nucleosomes by Isw1 , 2010 .

[33]  Yifan Cheng,et al.  The chromatin remodeler ACF acts as a dimeric motor to space nucleosomes , 2009, Nature.

[34]  B. Bartholomew,et al.  The Dpb4 Subunit of ISW2 Is Anchored to Extranucleosomal DNA* , 2007, Journal of Biological Chemistry.

[35]  Zhengjian Zhang,et al.  Ssn6–Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae , 2004, The EMBO journal.

[36]  K. Plath,et al.  Mediator coordinates PIC assembly with recruitment of CHD1. , 2011, Genes & development.

[37]  A. Shilatifard,et al.  Codependency of H2B monoubiquitination and nucleosome reassembly on Chd1. , 2012, Genes & development.

[38]  V. Iyer,et al.  The chromo domain protein Chd1p from budding yeast is an ATP‐dependent chromatin‐modifying factor , 2000, The EMBO journal.

[39]  C. Obuse,et al.  Active establishment of centromeric CENP-A chromatin by RSF complex , 2009, The Journal of cell biology.

[40]  C. Jin,et al.  Nucleosome stability mediated by histone variants H 3 . 3 and H 2 , 2007 .

[41]  Tamás Fischer,et al.  Chd1 chromatin remodelers maintain nucleosome organization and repress cryptic transcription , 2012, EMBO reports.

[42]  H. Roca,et al.  Analysis of transcription factor interactions in osteoblasts using competitive chromatin immunoprecipitation , 2008, Nucleic acids research.

[43]  Geoffrey J. Barton,et al.  A Role for Snf2-Related Nucleosome-Spacing Enzymes in Genome-Wide Nucleosome Organization , 2011, Science.

[44]  Michael R. Green,et al.  Dissecting the Regulatory Circuitry of a Eukaryotic Genome , 1998, Cell.

[45]  G. Längst,et al.  dMi‐2 and ISWI chromatin remodelling factors have distinct nucleosome binding and mobilization properties , 2000, The EMBO journal.

[46]  F. Cross,et al.  Multiple sequence-specific factors generate the nucleosome-depleted region on CLN2 promoter. , 2011, Molecular cell.

[47]  J. Delrow,et al.  Chromatin Remodeling around Nucleosome-Free Regions Leads to Repression of Noncoding RNA Transcription , 2010, Molecular and Cellular Biology.

[48]  Jeffrey N. McKnight,et al.  Extranucleosomal DNA Binding Directs Nucleosome Sliding by Chd1 , 2011, Molecular and Cellular Biology.

[49]  Tobias Straub,et al.  Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae , 2010, Nature Structural &Molecular Biology.

[50]  Vamsi K. Gangaraju,et al.  Dependency of ISW1a Chromatin Remodeling on Extranucleosomal DNA , 2007, Molecular and Cellular Biology.

[51]  S. Henikoff,et al.  Epigenome characterization at single base-pair resolution , 2011, Proceedings of the National Academy of Sciences.

[52]  Nir Friedman,et al.  Dynamics of Replication-Independent Histone Turnover in Budding Yeast , 2007, Science.

[53]  J. Palmer,et al.  Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. , 1999, Genes & development.

[54]  R. W. Davis,et al.  Replacement of chromosome segments with altered DNA sequences constructed in vitro. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J. Bähler Faculty Opinions recommendation of Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. , 2012 .

[56]  R. Perry,et al.  CHD1 interacts with SSRP1 and depends on both its chromodomain and its ATPase/helicase-like domain for proper association with chromatin , 1999, Chromosoma.

[57]  Hien G. Tran,et al.  Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes , 2003, The EMBO journal.

[58]  Rosanna Weksberg,et al.  Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia , 2002, Nature Genetics.

[59]  Toshio Tsukiyama,et al.  ISWI, a member of the SWl2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor , 1995, Cell.

[60]  Carl Wu,et al.  ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor , 1994, Nature.

[61]  Vishwanath R Iyer,et al.  Nucleosome positioning: bringing order to the eukaryotic genome. , 2012, Trends in cell biology.

[62]  R. Kingston,et al.  Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders , 2012, Epigenetics & Chromatin.

[63]  C. von Mering,et al.  PaxDb, a Database of Protein Abundance Averages Across All Three Domains of Life , 2012, Molecular & Cellular Proteomics.

[64]  Kevin Struhl,et al.  Evidence for Eviction and Rapid Deposition of Histones upon Transcriptional Elongation by RNA Polymerase II , 2004, Molecular and Cellular Biology.

[65]  C. Goding,et al.  The ISWI and CHD1 chromatin remodelling activities influence ADH2 expression and chromatin organization , 2006, Molecular microbiology.

[66]  B. Pugh,et al.  Genome-wide Nucleosome Specificity and Directionality of Chromatin Remodelers , 2012, Cell.

[67]  S. Henikoff,et al.  Tripartite organization of centromeric chromatin in budding yeast , 2011, Proceedings of the National Academy of Sciences.

[68]  M. Zofall,et al.  Topography of the ISW2–nucleosome complex: insights into nucleosome spacing and chromatin remodeling , 2004, The EMBO journal.

[69]  M. Palumbo,et al.  Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast , 2010, Nucleic acids research.

[70]  I. Albert,et al.  Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome , 2007, Nature.

[71]  Grant W. Brown,et al.  Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map , 2007, Nature.

[72]  K. Bloom,et al.  Tension-dependent nucleosome remodeling at the pericentromere in yeast , 2012, Molecular biology of the cell.

[73]  B. Turner,et al.  Immunoprecipitation of native chromatin: NChIP. , 2003, Methods.

[74]  C. Roberts,et al.  SWI/SNF nucleosome remodellers and cancer , 2011, Nature Reviews Cancer.