Pseudoergodic operators and periodic boundary conditions

There is an increasing literature on random non-self-adjoint infinite matrices with motivations ranging from condensed matter physics to neural networks. Many of these operators fall into the class of “pseudoergodic” operators, which allows the elimination of probabilistic arguments when studying spectral properties. Parallel to this is the increased awareness that spectral properties of non-self-adjoint operators, in particular stability, may be better captured via the notion of pseudospectra as opposed to spectra. Although it is well known that the finite section method applied to these matrices does not converge to the spectrum, it is often found in practice that the pseudospectrum behaves better with appropriate boundary conditions. We make this precise by giving a simple proof that the finite section method with periodic boundary conditions converges to the pseudospectrum of the full operator. Our results hold in any dimension (not just for banded bi-infinite matrices) and can be considered as a generalisation of the well-known classical result for banded Laurent operators and their circulant approximations. Furthermore, we numerically demonstrate a convergent algorithm for the pseudospectrum, including cases where periodic boundary conditions converge faster than the method of uneven sections. Finally, we show that the result carries over to pseudoergodic operators acting on lp spaces for p ∈ [1,∞].

[1]  Anders C. Hansen,et al.  Can everything be computed? - On the Solvability Complexity Index and Towers of Algorithms , 2015, ArXiv.

[2]  I. Goldsheid,et al.  DISTRIBUTION OF EIGENVALUES IN NON-HERMITIAN ANDERSON MODELS , 1997, cond-mat/9707230.

[3]  Non-Hermitian localization and delocalization. , 1997, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Lloyd N. Trefethen,et al.  Piecewise Continuous Toeplitz Matrices and Operators: Slow Approach to Infinity , 2002, SIAM J. Matrix Anal. Appl..

[5]  Matthew J. Colbrook,et al.  On the Solvability Complexity Index Hierarchy and Towers of Algorithms , 2015 .

[6]  R. Hagger On the Spectrum and Numerical Range of Tridiagonal Random Operators , 2014, 1407.5486.

[7]  L. Trefethen Spectra and pseudospectra , 2005 .

[8]  Michael V. Berry,et al.  The Riemann Zeros and Eigenvalue Asymptotics , 1999, SIAM Rev..

[9]  Marco Marletta,et al.  Eigenvalues in spectral gaps of differential operators , 2012 .

[10]  Steffen Roch,et al.  Finite Sections of Random Jacobi Operators , 2010, SIAM J. Numer. Anal..

[11]  Mark Embree,et al.  On large Toeplitz band matrices with an uncertain block , 2003 .

[12]  R. Hagger,et al.  Fredholm Theory with Applications to Random Operators , 2016 .

[13]  Tosio Kato Perturbation theory for linear operators , 1966 .

[14]  Anders C. Hansen,et al.  New barriers in complexity theory: On the solvability complexity index and the towers of algorithms , 2015 .

[15]  J. GLOBEVNIKl ON COMPLEX STRICT AND UNIFORM CONVEXITY , 2010 .

[16]  Matthew J. Colbrook,et al.  How to Compute Spectra with Error Control. , 2019, Physical review letters.

[17]  Naomichi Hatano,et al.  Non-Hermitian localization in biological networks. , 2015, Physical review. E.

[18]  Mark Embree,et al.  Infinite Toeplitz and Laurent matrices with localized impurities , 2002 .

[19]  M. Embree,et al.  Spectral approximation of banded Laurent matrices with localized random perturbations , 2002 .

[20]  A. Böttcher Infinite matrices and projection methods , 1995 .

[21]  E. Shargorodsky On the level sets of the resolvent norm of a linear operator , 2008 .

[22]  Marco Marletta,et al.  Neumann–Dirichlet maps and analysis of spectral pollution for non-self-adjoint elliptic PDEs with real essential spectrum , 2010 .

[23]  .. Here Spectral Theory of Pseudo-ergodic Operators , 2001 .

[24]  Nelson,et al.  Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.

[25]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[26]  Markus Seidel On (N,ϵ)-pseudospectra of operators on Banach spaces , 2012 .

[27]  M. Lindner,et al.  On the spectrum of operator families on discrete groups over minimal dynamical systems , 2016, 1606.08353.

[28]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[29]  Complex convexity and finitely additive vector measures , 1988 .

[30]  Spectral curves of non-hermitian hamiltonians , 1997, cond-mat/9710040.

[31]  A. Böttcher,et al.  Norms of Inverses, Spectra, and Pseudospectra of Large Truncated Wiener-Hopf Operators and Toeplitz Matrices , 1997 .

[32]  N. Hatano,et al.  Localization, resonance and non-Hermitian quantum mechanics , 2002 .

[33]  M. Lindner,et al.  Eigenvalue problem meets Sierpinski triangle: computing the spectrum of a non-self-adjoint random operator , 2010, 1003.3946.

[34]  Essential pseudospectra and essential norms of band-dominated operators , 2015, 1504.00540.

[35]  L. Trefethen,et al.  Spectra, pseudospectra, and localization for random bidiagonal matrices , 2000, cond-mat/0003514.

[36]  Ilse C. F. Ipsen,et al.  A Numerical Analyst Looks at the "Cutoff Phenomenon" in Card Shuffling and Other Markov Chains , 2007 .

[37]  M. Lindner A note on the spectrum of bi-infinite bi-diagonal random matrices , 2009 .

[38]  J. Globevnik Norm-constant analytic functions and equivalent norms , 1976 .

[39]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[40]  Naomi Gall,et al.  On' n 'on , 2008 .

[41]  M. Berry Mode degeneracies and the petermann excess-noise factor for unstable lasers , 2003 .

[42]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[43]  E. Brezin,et al.  NON-HERMITEAN DELOCALIZATION : MULTIPLE SCATTERING AND BOUNDS , 1998 .

[44]  V. I. Sokolov,et al.  The spectra of large Toeplitz band matrices with a randomly perturbed entry , 2003, Math. Comput..

[45]  Marko Lindner,et al.  Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method , 2006 .

[46]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[47]  Albrecht Böttcher,et al.  Spectral properties of banded Toeplitz matrices , 1987 .

[48]  E. Davies,et al.  Spectrum of a Feinberg-Zee random hopping matrix , 2011, 1110.0792.

[49]  On the Spectra and Pseudospectra of a Class of Non-Self-Adjoint Random Matrices and Operators , 2011, 1107.0177.

[50]  Tadashi Hiraoka On Uniformly Convex Spaces , 1953 .

[51]  M. Lindner,et al.  Coburn's Lemma and the Finite Section Method for Random Jacobi Operators , 2015, 1505.05188.

[52]  Julien M. Hendrickx,et al.  Matrix p-Norms Are NP-Hard to Approximate If p!=q1, 2, INFINITY , 2010, SIAM J. Matrix Anal. Appl..

[53]  C. Beenakker,et al.  Theory of directed localization in one dimension. , 1997, cond-mat/9705186.

[54]  On the remarkable spectrum of a non-Hermitian random matrix model , 2002, math-ph/0204015.

[55]  D. Krejčiřík,et al.  Pseudospectra in non-Hermitian quantum mechanics , 2014, 1402.1082.

[56]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[57]  David R. Nelson,et al.  Vortex pinning and non-Hermitian quantum mechanics , 1997 .

[58]  V. L. Sedov,et al.  Localized magnetic states in metals , 1982 .

[59]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[60]  B. Eynard,et al.  Random matrices. , 2015, 1510.04430.

[61]  C. Bernardi,et al.  Approximations spectrales de problèmes aux limites elliptiques , 2003 .

[62]  I. Goldsheid,et al.  Eigenvalue curves of asymmetric tridiagonal random matrices , 2000, math-ph/0011003.

[63]  M. Lindner The finite section method and stable subsequences , 2010 .

[64]  Lloyd N. Trefethen,et al.  Pseudospectra of Linear Operators , 1997, SIAM Rev..

[65]  Anders C. Hansen,et al.  On the Solvability Complexity Index, the n-pseudospectrum and approximations of spectra of operators , 2011 .

[66]  Spectral properties of random non-self-adjoint matrices and operators , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[67]  David R. Nelson,et al.  NON-HERMITIAN LOCALIZATION AND POPULATION BIOLOGY , 1997, cond-mat/9708071.

[68]  Nathanial P. Brown Quasi-diagonality and the finite section method , 2007, Math. Comput..

[69]  A. Böttcher Pseudospectra and Singular Values of Large Convolution Operators , 1994 .

[70]  Alexander Olshevsky,et al.  Matrix P-norms are NP-hard to approximate if p ≠1,2,∞ , 2009 .

[71]  WINDING NUMBERS, COMPLEX CURRENTS, AND NON-HERMITIAN LOCALIZATION , 1998, cond-mat/9801111.

[72]  E. Davies,et al.  Non‐Self‐Adjoint Differential Operators , 2002 .

[73]  Boris A. Khoruzhenko,et al.  Eigenvalue Curves of Asymmetric Tridiagonal Matrices , 2000 .

[74]  K. Dahmen,et al.  Population dynamics and non-Hermitian localization , 1999, cond-mat/9903276.

[75]  William Arveson C*-Algebras and Numerical Linear Algebra , 1992 .

[76]  Markus Seidel Fredholm theory for band-dominated and related operators: a survey , 2013, 1307.1635.

[77]  THE ROLE OF C ∗ -ALGEBRAS IN INFINITE DIMENSIONAL NUMERICAL LINEAR ALGEBRA , 1993, funct-an/9306003.