Latent Semantic Kernels
暂无分享,去创建一个
[1] M. Aizerman,et al. Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .
[2] P. C. Wong,et al. Generalized vector spaces model in information retrieval , 1985, SIGIR '85.
[3] William H. Press,et al. Numerical recipes in C. The art of scientific computing , 1987 .
[4] William H. Press,et al. Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .
[5] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[6] Richard A. Harshman,et al. Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..
[7] Bernhard E. Boser,et al. A training algorithm for optimal margin classifiers , 1992, COLT '92.
[8] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[9] Jean Paul Ballerini,et al. Experiments in multilingual information retrieval using the SPIDER system , 1996, SIGIR '96.
[10] Bernhard Schölkopf,et al. Kernel Principal Component Analysis , 1997, ICANN.
[11] Michael L. Littman,et al. Automatic Cross-Language Retrieval Using Latent Semantic Indexing , 1997 .
[12] Susan T. Dumais,et al. Inductive learning algorithms and representations for text categorization , 1998, CIKM '98.
[13] John Shawe-Taylor,et al. Structural Risk Minimization Over Data-Dependent Hierarchies , 1998, IEEE Trans. Inf. Theory.
[14] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[15] Thorsten Joachims,et al. Making large scale SVM learning practical , 1998 .
[16] Gunnar Rätsch,et al. Kernel PCA pattern reconstruction via approximate pre-images. , 1998 .
[17] Alexander Gammerman,et al. Ridge Regression Learning Algorithm in Dual Variables , 1998, ICML.
[18] Thorsten Joachims,et al. Text categorization with support vector machines , 1999 .
[19] B. Schölkopf,et al. Advances in kernel methods: support vector learning , 1999 .
[20] Bernhard Schölkopf,et al. SV Estimation of a Distribution's Support , 1999, NIPS 1999.
[21] Nello Cristianini,et al. An introduction to Support Vector Machines , 2000 .
[22] Fan Jiang,et al. Approximate Dimension Equalization in Vector-based Information Retrieval , 2000, ICML.
[23] Nello Cristianini,et al. Margin Distribution and Soft Margin , 2000 .
[24] Florence d'Alché-Buc,et al. Support Vector Machines based on a semantic kernel for text categorization , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.
[25] Ralf Herbrich,et al. Large margin rank boundaries for ordinal regression , 2000 .
[26] Thore Graepel,et al. Large Margin Rank Boundaries for Ordinal Regression , 2000 .
[27] P. Bartlett,et al. Gaussian Processes and SVM: Mean Field and Leave-One-Out , 2000 .
[28] Bernhard Schölkopf,et al. Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.
[29] Bernhard Schölkopf,et al. Sparse Kernel Feature Analysis , 2002 .
[30] Dustin Boswell,et al. Introduction to Support Vector Machines , 2002 .
[31] Bernhard Schölkopf,et al. A tutorial on support vector regression , 2004, Stat. Comput..
[32] Jörg Kindermann,et al. Text Categorization with Support Vector Machines. How to Represent Texts in Input Space? , 2002, Machine Learning.