A virtual element method for the transmission eigenvalue problem

In this paper, we analyze a virtual element method (VEM) for solving a non-selfadjoint fourth-order eigenvalue problem derived from the transmission eigenvalue problem. We write a variational formulation and propose a $C^1$-conforming discretization by means of the VEM. We use the classical approximation theory for compact non-selfadjoint operators to obtain optimal order error estimates for the eigenfunctions and a double order for the eigenvalues. Finally, we present some numerical experiments illustrating the behavior of the virtual scheme on different families of meshes.

[1]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[2]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[3]  Rodolfo Rodríguez,et al.  Convergence of a lowest-order finite element method for the transmission eigenvalue problem , 2018, Calcolo.

[4]  Xia Ji,et al.  C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0$$\end{document}IP Methods for the Transmission Eigenvalue Proble , 2015, Journal of Scientific Computing.

[5]  Lourenço Beirão da Veiga,et al.  Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates , 2017, Math. Comput..

[6]  L. B. D. Veiga,et al.  A virtual element method with arbitrary regularity , 2014 .

[7]  Felipe Lepe,et al.  A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2015, Journal of Scientific Computing.

[8]  L. Beirao da Veiga,et al.  A Virtual Element Method for elastic and inelastic problems on polytope meshes , 2015, 1503.02042.

[9]  Fioralba Cakoni,et al.  The Existence of an Infinite Discrete Set of Transmission Eigenvalues , 2010, SIAM J. Math. Anal..

[10]  Gianmarco Manzini,et al.  The Mimetic Finite Difference Method for Elliptic Problems , 2014 .

[11]  Qingsong Zou,et al.  A $C^0$ linear finite element method for two fourth-order eigenvalue problems , 2016 .

[12]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[13]  Simone Scacchi,et al.  A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..

[14]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[15]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[16]  D. Colton,et al.  The inverse electromagnetic scattering problem for anisotropic media , 2010 .

[17]  David Mora,et al.  A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations , 2017, IMA Journal of Numerical Analysis.

[18]  Emmanuil H. Georgoulis,et al.  A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.

[19]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[20]  D. Colton,et al.  Analytical and computational methods for transmission eigenvalues , 2010 .

[21]  Jiguang Sun Iterative Methods for Transmission Eigenvalues , 2011, SIAM J. Numer. Anal..

[22]  J. Osborn Spectral approximation for compact operators , 1975 .

[23]  Gabriel N. Gatica,et al.  A mixed virtual element method for the Brinkman problem , 2017 .

[24]  Susanne C. Brenner,et al.  Some Estimates for Virtual Element Methods , 2017, Comput. Methods Appl. Math..

[25]  Gianmarco Manzini,et al.  Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.

[26]  Gianmarco Manzini,et al.  The nonconforming Virtual Element Method for eigenvalue problems , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[27]  G. Vacca An H1-conforming virtual element for Darcy and Brinkman equations , 2017 .

[28]  Stefano Berrone,et al.  Order preserving SUPG stabilization for the Virtual Element formulation of advection-diffusion problems , 2016 .

[29]  Gabriel N. Gatica,et al.  A mixed virtual element method for the pseudostress–velocity formulation of the Stokes problem , 2017 .

[30]  Francesca Gardini,et al.  Virtual element method for second-order elliptic eigenvalue problems , 2016, 1610.03675.

[31]  Glaucio H. Paulino,et al.  Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .

[32]  A. Ern,et al.  A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..

[33]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[34]  Hai Bi,et al.  A new multigrid finite element method for the transmission eigenvalue problems , 2016, Appl. Math. Comput..

[35]  L. Donatella Marini,et al.  Virtual Element Method for fourth order problems: L2-estimates , 2016, Comput. Math. Appl..

[36]  Hai Bi,et al.  Non-conforming finite element methods for transmission eigenvalue problem ☆ , 2016, 1601.01068.

[37]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[38]  Lourenco Beirao da Veiga,et al.  Stability Analysis for the Virtual Element Method , 2016, 1607.05988.

[39]  Jiguang Sun,et al.  Error Analysis for the Finite Element Approximation of Transmission Eigenvalues , 2014, Comput. Methods Appl. Math..

[40]  Lourenço Beirão da Veiga,et al.  A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..

[41]  David Mora,et al.  A virtual element method for the vibration problem of Kirchhoff plates , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.

[42]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[43]  Lourenço Beirão da Veiga,et al.  A virtual element method for the acoustic vibration problem , 2016, Numerische Mathematik.

[44]  D. Colton,et al.  Transmission eigenvalues and the nondestructive testing of dielectrics , 2008 .

[45]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[46]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[47]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[48]  Liwei Xu,et al.  $$C^0$$C0IP Methods for the Transmission Eigenvalue Problem , 2016, J. Sci. Comput..

[49]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[50]  Ivonne Sgura,et al.  Virtual Element Method for the Laplace-Beltrami equation on surfaces , 2016, 1612.02369.

[51]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[52]  Ilaria Perugia,et al.  A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.