Antisymmetric Paramodular Forms of Weights 2 and 3

We define an algebraic set in $23$-dimensional projective space whose ${{\mathbb{Q}}}$-rational points correspond to meromorphic, antisymmetric, paramodular Borcherds products. We know two lines inside this algebraic set. Some rational points on these lines give holomorphic Borcherds products and thus construct examples of Siegel modular forms on degree 2 paramodular groups. Weight $3$ examples provide antisymmetric canonical differential forms on Siegel modular three-folds. Weight $2$ is the minimal weight and these examples, via the paramodular conjecture, give evidence for the modularity of some rank 1 abelian surfaces defined over $\mathbb{Q}$.

[1]  D. Zagier,et al.  Theta Blocks , 2019, 1907.00188.

[2]  J. Voight,et al.  On the paramodularity of typical abelian surfaces , 2018, Algebra & Number Theory.

[3]  D. Yuen,et al.  Siegel Paramodular Forms of Weight 2 and Squarefree Level , 2016, 1612.00925.

[4]  D. Yuen,et al.  COMPUTATIONS OF SPACES OF PARAMODULAR FORMS OF GENERAL LEVEL , 2016 .

[5]  D. Yuen,et al.  Borcherds Products Everywhere , 2013, 1312.6332.

[6]  Don Zagier,et al.  The Theory of Jacobi Forms , 2013 .

[7]  T. Ibukiyama,et al.  Jacobi forms that characterize paramodular forms , 2012, 1209.3438.

[8]  G. Valery 24 faces of the Borcherds modular form Phi_{12} , 2012 .

[9]  K. Hulek,et al.  Uniruledness of orthogonal modular varieties , 2012, 1202.3361.

[10]  K. Kramer,et al.  Paramodular Abelian Varieties of Odd Conductor , 2010, 1004.4699.

[11]  Cris Poor,et al.  Paramodular cusp forms , 2009, Math. Comput..

[12]  Paul E. Gunnells,et al.  Cohomology of congruence subgroups of SL4(ℤ). III , 2009, Math. Comput..

[13]  P. Gunnells,et al.  ON THE COHOMOLOGY OF CONGRUENCE SUBGROUPS OF SL4(Z) , 2002, 0706.3634.

[14]  P. Gunnells,et al.  Cohomology of Congruence Subgroups of SL_4(Z). III , 2000, math/0003219.

[15]  K. Hulek,et al.  Commutator coverings of Siegel threefolds , 1997, alg-geom/9702007.

[16]  V. Gritsenko,et al.  Automorphic Forms and Lorentzian Kac-Moody Algebras. Part II , 1996, alg-geom/9611028.

[17]  V. Gritsenko,et al.  Automorphic Forms and Lorentzian Kac--Moody Algebras. Part I , 1996, alg-geom/9610022.

[18]  R. Borcherds Automorphic forms with singularities on Grassmannians , 1996, alg-geom/9609022.

[19]  K. Hulek,et al.  Minimal Siegel modular threefolds , 1995, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  V. Gritsenko,et al.  Siegel automorphic form corrections of some Lorentzian Kac-Moody Lie algebras , 1995, alg-geom/9504006.

[21]  B. Roberts,et al.  Local newforms for GSp(4) , 2007 .

[22]  V. Gritsenko Irrationality of the moduli spaces of polarized abelian surfaces. With an appendix by the author and , 1994 .