Analysis of Preconditioners for Saddle-Point Problems

Mixed finite element formulations give rise to large, sparse, block linear systems of equations, the solution of which is often sought via a preconditioned iterative technique. In this work we present a general analysis of block-preconditioners based on the stability conditions inherited from the formulation of the finite element method (the Babuska--Brezzi, or inf-sup, conditions). The analysis is motivated by the notions of norm-equivalence and field-of-values-equivalence of matrices. In particular, we give sufficient conditions for diagonal and triangular block-preconditioners to be norm- and field-of-values-equivalent to the system matrix.

[1]  Andrew J. Wathen,et al.  Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.

[2]  Piotr Krzyzanowski,et al.  On Block Preconditioners for Nonsymmetric Saddle Point Problems , 2001, SIAM J. Sci. Comput..

[3]  Thomas A. Manteuffel,et al.  On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations , 1990 .

[4]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[5]  R. Glowinski,et al.  Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem , 1977 .

[6]  M. Arioli,et al.  Stopping criteria for iterative methods:¶applications to PDE's , 2001 .

[7]  Axel Klawonn,et al.  Block-Triangular Preconditioners for Saddle Point Problems with a Penalty Term , 1998, SIAM J. Sci. Comput..

[8]  D. Arnold,et al.  Preconditioning discrete approximations of the Reissner-Mindlin plate model , 1997 .

[9]  Axel Klawonn,et al.  Block triangular preconditioners for nonsymmetric saddle point problems: field-of-values analysis , 1999, Numerische Mathematik.

[10]  Andrew J. Wathen,et al.  Fast iterative solution of stabilised Stokes systems, part I: using simple diagonal preconditioners , 1993 .

[11]  D. Loghin Analysis of preconditioned Picard iterations for the Navier-Stokes equations , 2001 .

[12]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[13]  Andrew J. Wathen,et al.  A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..

[14]  Ivo Babuška,et al.  Mixed-hybrid finite element approximations of second-order elliptic boundary value problems. Part 2 - weak-hybrid methods , 1978 .

[15]  D. Kay,et al.  A Green's function preconditioner for the steady−state Navier−Stokes equations , 1999 .

[16]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[17]  Gene H. Golub,et al.  Estimates in quadratic formulas , 1994, Numerical Algorithms.

[18]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[19]  Andrew J. Wathen,et al.  Stopping criteria for iterations in finite element methods , 2005, Numerische Mathematik.

[20]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[21]  Zhangxin Chen,et al.  Domain decomposition algorithms for mixed methods for second-order elliptic problems , 1996, Math. Comput..

[22]  G. Golub,et al.  Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .

[23]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[24]  Ragnar Winther,et al.  Substructure preconditioners for elliptic saddle point problems , 1993 .

[25]  Ilaria Perugia,et al.  Linear Algebra Methods in a Mixed Approximation of Magnetostatic Problems , 1999, SIAM J. Sci. Comput..

[26]  J. Pasciak,et al.  Iterative techniques for time dependent Stokes problems , 1997 .

[27]  P. Vassilevski,et al.  Multilevel iterative methods for mixed finite element discretizations of elliptic problems , 1992 .

[28]  Howard C. Elman,et al.  Preconditioning for the Steady-State Navier-Stokes Equations with Low Viscosity , 1999, SIAM J. Sci. Comput..

[29]  Hsing-Hsia Chen,et al.  Preconditioning for Regular Elliptic Systems , 1999, SIAM J. Numer. Anal..

[30]  A. Wathen,et al.  The convergence of iterative solution methods for symmetric and indefinite linear systems , 1997 .

[31]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[32]  Howard C. Elman,et al.  Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..

[33]  F. Brezzi,et al.  A discourse on the stability conditions for mixed finite element formulations , 1990 .

[34]  J. Cahouet,et al.  Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .

[35]  Gérard Meurant,et al.  Numerical experiments in computing bounds for the norm of the error in the preconditioned conjugate gradient algorithm , 1999, Numerical Algorithms.

[36]  H. Elman Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .

[37]  M. Arioli,et al.  A stopping criterion for the conjugate gradient algorithm in a finite element method framework , 2000, Numerische Mathematik.

[38]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .