Analysis of Preconditioners for Saddle-Point Problems
暂无分享,去创建一个
[1] Andrew J. Wathen,et al. Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.
[2] Piotr Krzyzanowski,et al. On Block Preconditioners for Nonsymmetric Saddle Point Problems , 2001, SIAM J. Sci. Comput..
[3] Thomas A. Manteuffel,et al. On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations , 1990 .
[4] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[5] R. Glowinski,et al. Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem , 1977 .
[6] M. Arioli,et al. Stopping criteria for iterative methods:¶applications to PDE's , 2001 .
[7] Axel Klawonn,et al. Block-Triangular Preconditioners for Saddle Point Problems with a Penalty Term , 1998, SIAM J. Sci. Comput..
[8] D. Arnold,et al. Preconditioning discrete approximations of the Reissner-Mindlin plate model , 1997 .
[9] Axel Klawonn,et al. Block triangular preconditioners for nonsymmetric saddle point problems: field-of-values analysis , 1999, Numerische Mathematik.
[10] Andrew J. Wathen,et al. Fast iterative solution of stabilised Stokes systems, part I: using simple diagonal preconditioners , 1993 .
[11] D. Loghin. Analysis of preconditioned Picard iterations for the Navier-Stokes equations , 2001 .
[12] J. Pasciak,et al. A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .
[13] Andrew J. Wathen,et al. A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..
[14] Ivo Babuška,et al. Mixed-hybrid finite element approximations of second-order elliptic boundary value problems. Part 2 - weak-hybrid methods , 1978 .
[15] D. Kay,et al. A Green's function preconditioner for the steady−state Navier−Stokes equations , 1999 .
[16] A. Wathen,et al. Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .
[17] Gene H. Golub,et al. Estimates in quadratic formulas , 1994, Numerical Algorithms.
[18] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[19] Andrew J. Wathen,et al. Stopping criteria for iterations in finite element methods , 2005, Numerische Mathematik.
[20] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[21] Zhangxin Chen,et al. Domain decomposition algorithms for mixed methods for second-order elliptic problems , 1996, Math. Comput..
[22] G. Golub,et al. Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .
[23] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[24] Ragnar Winther,et al. Substructure preconditioners for elliptic saddle point problems , 1993 .
[25] Ilaria Perugia,et al. Linear Algebra Methods in a Mixed Approximation of Magnetostatic Problems , 1999, SIAM J. Sci. Comput..
[26] J. Pasciak,et al. Iterative techniques for time dependent Stokes problems , 1997 .
[27] P. Vassilevski,et al. Multilevel iterative methods for mixed finite element discretizations of elliptic problems , 1992 .
[28] Howard C. Elman,et al. Preconditioning for the Steady-State Navier-Stokes Equations with Low Viscosity , 1999, SIAM J. Sci. Comput..
[29] Hsing-Hsia Chen,et al. Preconditioning for Regular Elliptic Systems , 1999, SIAM J. Numer. Anal..
[30] A. Wathen,et al. The convergence of iterative solution methods for symmetric and indefinite linear systems , 1997 .
[31] Jean E. Roberts,et al. Mixed and hybrid methods , 1991 .
[32] Howard C. Elman,et al. Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..
[33] F. Brezzi,et al. A discourse on the stability conditions for mixed finite element formulations , 1990 .
[34] J. Cahouet,et al. Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .
[35] Gérard Meurant,et al. Numerical experiments in computing bounds for the norm of the error in the preconditioned conjugate gradient algorithm , 1999, Numerical Algorithms.
[36] H. Elman. Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .
[37] M. Arioli,et al. A stopping criterion for the conjugate gradient algorithm in a finite element method framework , 2000, Numerische Mathematik.
[38] T. Manteuffel,et al. FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .