Can Mathematical Models Predict the Outcomes of Prostate Cancer Patients Undergoing Intermittent Androgen Deprivation Therapy

Androgen deprivation therapy is a common treatment for advanced or metastatic prostate cancer. Like the normal prostate, most tumors depend on androgens for proliferation and survival but often develop treatment resistance. Hormonal treatment causes many undesirable side effects which significantly decrease the quality of life for patients. Intermittently applying androgen deprivation in cycles reduces the total duration with these negative effects and may reduce selective pressure for resistance. We extend an existing model which used measurements of patient testosterone levels to accurately fit measured serum prostate specific antigen (PSA) levels. We test the model's predictive accuracy, using only a subset of the data to find parameter values. The results are compared with those of an existing piecewise linear model which does not use testosterone as an input. Since actual treatment protocol is to re-apply therapy when PSA levels recover beyond some threshold value, we develop a second method for predicting the PSA levels. Based on a small set of data from seven patients, our results showed that the piecewise linear model produced slightly more accurate results while the two predictive methods are comparable. This suggests that a simpler model may be more beneficial for a predictive use compared to a more biologically insightful model, although further research is needed in this field prior to implementing mathematical models as a predictive method in a clinical setting. Nevertheless, both models are an important step in this direction.

Dashiell E. A. Fryer | Yang Kuang | Katrina K. Treloar | Azmy S. Ackleh | Timothy C. Reluga | Yuri S. Semenov | Eduardo Sontag | J. Keener | D. Roose | J. Ottesen | G. Samaey | A. Gumel | Y. Kuang | A. Shilnikov | C. Drapaca | Ucla | A. Cintrón-Arias | Alan Veliz-Cuba | A. Novozhilov | R. Diegelmann | C. Tomasetti | J. Nagy | N. Vaidya | C. Stamoulis | Z. Belkhatir | J. Loros | Mokryun L. Baek | T. Karabiyik | Zahra Aminzare | C. Wolgemuth | J. MacLaurin | J. Schwabedal | A. Packer | S. Mcelwain | Oyita Udiani | M. Garlick | Andrey A Dovzhenok | Johanne Gudmand-Høyer | Isaac Takaidza | J. Juliano | R. A. Everett | Aaron Packer | V. Perminov | Alacia M Voth | R. Waters | Tamra Heberling | R. Everett | Annelies Lejon | Pierre Kornprobst | E. Strawbridge | W. Nicola | O. Faugeras | Rami M. Amro | Santiago Schnell | John Rinzel | Kristin Rae Swanson | Oliver E Jensen | Arthur Tbd | Lander | Alison Tbd | Galvani | Lu J | Norman Mazer | F. Hoffmann | Alan M Hastings | Uc Davis | James J Collins | John G Alford | Edward W. Swim | Ku Leuven | Yongli Cai | Shangbin Cui | Weiming Wang | Thomas W Carr | Adnan Khan | Jing Li | Alexander Neiman | Inria Sophia-Antipolis | Xueying Wang | M. Mehedi | M. Hasan | Philipp Kuegler | Ricam | Angela M Reynolds | Racheal Cooper | Rebecca Segal | Tomas Gedeon | Richard Allen | Cynthia Musante | Maja Skataric | Evgeni Nikolaev | Scott T Bickel | Marc Harper | Alexander Bratus | Swati Patel | Sebastian Schreiber | Luis Gordillo | Christopher Lee | Lihong Zhao | Sue Ann Campbell | Bernard Chang | Li Yang | Arun Mehra | Jay Dunlap | Sookkyung Lim | Christian Hong | Jae Kyoung Kim | Zachary Kilpatrick | Matthew Bennett | Kreimir Josic | Roy Malka | Marcio Duarte | Albasini Mourao | Doree Kreitmann | Samuel A Ramirez | Sridhar Ragavachari | Matthew J. Simpson | Ruth E. Baker | Paulo V Amorim | James Powell | Lisa G Davis | Ryan Lamb | Billie Karens | Bradford Taylor | Georgia Tech | Michael H. Cortez | Joshua Weitz | Michael Li

[1]  C. Higano Side effects of androgen deprivation therapy: monitoring and minimizing toxicity. , 2003, Urology.

[2]  L. Klotz,et al.  Androgen deprivation therapy in advanced prostate cancer: is intermittent therapy the new standard of care? , 2012, Current oncology.

[3]  Kazuyuki Aihara,et al.  Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer. , 2010, Journal of theoretical biology.

[4]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.

[5]  D. Feldman,et al.  The development of androgen-independent prostate cancer , 2001, Nature Reviews Cancer.

[6]  Travis Portz,et al.  A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy , 2012 .

[7]  A. Jarkowski,et al.  A new era for castrate resistant prostate cancer: A treatment review and update , 2012, Journal of oncology pharmacy practice : official publication of the International Society of Oncology Pharmacy Practitioners.

[8]  R. Jennrich,et al.  Primary intermittent androgen deprivation as initial therapy for men with newly diagnosed prostate cancer. , 2011, Clinical genitourinary cancer.

[9]  J. Isaacs,et al.  The biology of hormone refractory prostate cancer. Why does it develop? , 1999, The Urologic clinics of North America.

[10]  Joseph L. Chin,et al.  Intermittent Androgen Suppression for Rising PSA Level After Radiotherapy , 2013 .

[11]  M. R. Droop,et al.  25 Years of Algal Growth Kinetics A Personal View , 1983 .

[12]  Kazuyuki Aihara,et al.  Quantitative mathematical modeling of PSA dynamics of prostate cancer patients treated with intermittent androgen suppression. , 2012, Journal of molecular cell biology.

[13]  M. Resnick Urological cancer: Walking the tightrope of survival and quality of life with ADT , 2013, Nature Reviews Clinical Oncology.

[14]  S. Goldenberg,et al.  Effects of intermittent androgen suppression on androgen‐dependent tumors. Apoptosis and serum prostate‐specific antigen , 1993, Cancer.

[15]  J. Efstathiou,et al.  Urological cancer: The benefits of intermittent androgen-deprivation therapy , 2012, Nature Reviews Clinical Oncology.

[16]  A. Jemal,et al.  Cancer statistics, 2013 , 2013, CA: a cancer journal for clinicians.

[17]  F. Labrie Blockade of testicular and adrenal androgens in prostate cancer treatment , 2011, Nature Reviews Urology.

[18]  R W Veltri,et al.  Implication of cell kinetic changes during the progression of human prostatic cancer. , 1995, Clinical cancer research : an official journal of the American Association for Cancer Research.

[19]  Thomas L. Jackson,et al.  A mathematical model of prostate tumor growth and androgen-independent relapse , 2003 .

[20]  Donna L Berry,et al.  Intermittent versus continuous androgen deprivation in prostate cancer. , 2013, The New England journal of medicine.

[21]  W. Gerald,et al.  Targeting the androgen receptor: improving outcomes for castration-resistant prostate cancer. , 2004, Endocrine-related cancer.

[22]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[23]  W. Dahut,et al.  Androgen deprivation therapy for prostate cancer. , 2005, JAMA.

[24]  P. Nelson Molecular states underlying androgen receptor activation: a framework for therapeutics targeting androgen signaling in prostate cancer. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[25]  Trachette L. Jackson,et al.  A mathematical investigation of the multiple pathways to recurrent prostate cancer: comparison with experimental data. , 2004, Neoplasia.

[26]  Gouhei Tanaka,et al.  A Mathematical Model of Intermittent Androgen Suppression for Prostate Cancer , 2008, J. Nonlinear Sci..

[27]  M. Gleave,et al.  The continued debate: intermittent vs. continuous hormonal ablation for metastatic prostate cancer. , 2009, Urologic oncology.

[28]  Mette S Olufsen,et al.  Rarefaction and blood pressure in systemic and pulmonary arteries , 2012, Journal of Fluid Mechanics.