Fractal dimension for fractal structures: A Hausdorff approach

Abstract This paper provides a new model to compute the fractal dimension of a subset on a generalized-fractal space. Recall that fractal structures are a perfect place where a new definition of fractal dimension can be given, so we perform a suitable discretization of the Hausdorff theory of fractal dimension. We also find some connections between our definition and the classical ones and also with fractal dimensions I & II (see M.A. Sanchez-Granero and M. Fernandez-Martinez (2010) [16] ). Therefore, we generalize them and obtain an easy method in order to calculate the fractal dimension of strict self-similar sets which are not required to verify the open set condition .

[1]  Kin-Man Lam,et al.  Locating the eye in human face images using fractal dimensions , 2001 .

[2]  F. G. Arenas,et al.  A characterization of non-archimedeanly quasimetrizable spaces , 1999 .

[3]  Transfinite Hausdorff dimension , 2009 .

[4]  Xiaoming Fan,et al.  Exponential attractor and its fractal dimension for a second order lattice dynamical system , 2010 .

[5]  M. Sánchez-Granero,et al.  A new approach to metrization , 2002 .

[6]  G Landini,et al.  Fractal analysis of the normal human retinal fluorescein angiogram. , 1993, Current eye research.

[7]  G. A. Edgar Measure, Topology, and Fractal Geometry , 1990 .

[8]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[9]  R. L. Webber,et al.  Fractal dimension from radiographs of peridental alveolar bone. A possible diagnostic indicator of osteoporosis. , 1992, Oral surgery, oral medicine, and oral pathology.

[10]  Christoph Bandt,et al.  Topological spaces admitting a unique fractal structure , 1992, Fundamenta Mathematicae.

[11]  M. Fernández-Martínez,et al.  Fractal Dimension for Fractal Structures , 2010, 1007.3236.

[12]  Andreas Schief,et al.  Separation properties for self-similar sets , 1994 .

[13]  A Characterization of Self-similar Symbolic Spaces , 2012 .

[14]  J. M. Emlen,et al.  Quantitative characterization of the regressive ecological succession by fractal analysis of plant spatial patterns , 2003 .

[15]  J W Baish,et al.  Fractals and cancer. , 2000, Cancer research.

[16]  Takayuki Hirata,et al.  A correlation between the b value and the fractal dimension of earthquakes , 1989 .