The Method of Fundamental Solutions Applied to Some Inverse Eigenproblems

In this work we address the application of the method of fundamental solution (MFS) as a forward solver in some shape optimization problems in two- and three-dimensional domains. It is well known (Kac's problem) that a set of eigenvalues does not determine uniquely the shape of the domain. Moreover, even the existence problem is not well defined due to the Ashbaugh--Benguria inequality. Although these results constitute counterexamples in the general problem of shape determination from the eigenfrequencies, we can address simpler questions in shape determination using the MFS. For instance, we apply the MFS to build domains that include a specific finite set of eigenvalues, or that have an eigenmode that verifies some prescribed conditions---as a particular case, an eigenmode that defines a certain nodal line.

[1]  Lloyd N. Trefethen,et al.  Computed eigenmodes of planar regions , 2005 .

[2]  Edouard Oudet,et al.  Minimizing the Second Eigenvalue of the Laplace Operator with Dirichlet Boundary Conditions , 2003 .

[3]  Tobin A. Driscoll,et al.  Eigenmodes of Isospectral Drums , 1997, SIAM Rev..

[4]  Jens Gravesen,et al.  Isogeometric Shape Optimization of Vibrating Membranes , 2011 .

[5]  E. F. F. Chladni Entdeckungen über die Theorie des Klanges , 1967 .

[6]  George Polya,et al.  On the characteristic frequencies of a symmetric membrane , 1955 .

[7]  Steve Zelditch,et al.  Inverse spectral problem for analytic domains, II: ℤ2-symmetric domains , 2009 .

[8]  David L. Webb,et al.  One cannot hear the shape of a drum , 1992, math/9207215.

[9]  R. Benguria,et al.  A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions , 1992 .

[10]  Range of the first three eigenvalues of the planar Dirichlet Laplacian , 2002, math/0203231.

[11]  M. Kac Can One Hear the Shape of a Drum , 1966 .

[12]  Jeng-Tzong Chen,et al.  Eigensolutions of multiply connected membranes using the method of fundamental solutions , 2005 .

[13]  Andreas Karageorghis,et al.  The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation , 2001, Appl. Math. Lett..

[14]  Edouard Oudet,et al.  Numerical minimization of eigenmodes of a membrane with respect to the domain , 2004 .

[15]  E. Terhardt Pitch, consonance, and harmony. , 1974, The Journal of the Acoustical Society of America.

[16]  C. Moler,et al.  APPROXIMATIONS AND BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS , 1967 .

[17]  Klaus-Dieter Semmler,et al.  Some planar isospectral domains , 2010, 1005.1839.

[18]  K. H. Chen,et al.  The Boundary Collocation Method with Meshless Concept for Acoustic Eigenanalysis of Two-Dimensional Cavities Using Radial Basis Function , 2002 .

[19]  C. B. Moler,et al.  Bounds for Eigenvalues and Eigenvectors of Symmetric Operators , 1968 .

[20]  V. D. Kupradze,et al.  The method of functional equations for the approximate solution of certain boundary value problems , 1964 .

[21]  G. Mey Calculation of eigenvalues of the Helmholtz equation by an integral equation , 1976 .

[22]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[23]  E. Terhardt,et al.  Pitch of complex signals according to virtual‐pitch theory: Tests, examples, and predictions , 1982 .

[24]  Elliptical membranes with smallest second eigenvalue , 1973 .

[25]  H. Weyl Ramifications, old and new, of the eigenvalue problem , 1950 .

[26]  C. S. Chen,et al.  A new method of fundamental solutions applied to nonhomogeneous elliptic problems , 2005, Adv. Comput. Math..

[27]  Lloyd N. Trefethen,et al.  Reviving the Method of Particular Solutions , 2005, SIAM Rev..

[28]  G. Pólya,et al.  ON THE RATIO OF CONSECUTIVE EIGENVALUES , 1956 .

[29]  R. Benguria,et al.  Proof of the Payne-Pólya-Weinberger conjecture , 1991 .

[30]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[31]  Carlos J. S. Alves,et al.  The Method of Fundamental Solutions Applied to the Calculation of Eigenfrequencies and Eigenmodes of 2D Simply Connected Shapes , 2005 .

[32]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[33]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[34]  L. Rayleigh,et al.  The theory of sound , 1894 .

[35]  Braxton Osting,et al.  Optimization of spectral functions of Dirichlet-Laplacian eigenvalues , 2010, J. Comput. Phys..