The Method of Fundamental Solutions Applied to Some Inverse Eigenproblems
暂无分享,去创建一个
[1] Lloyd N. Trefethen,et al. Computed eigenmodes of planar regions , 2005 .
[2] Edouard Oudet,et al. Minimizing the Second Eigenvalue of the Laplace Operator with Dirichlet Boundary Conditions , 2003 .
[3] Tobin A. Driscoll,et al. Eigenmodes of Isospectral Drums , 1997, SIAM Rev..
[4] Jens Gravesen,et al. Isogeometric Shape Optimization of Vibrating Membranes , 2011 .
[5] E. F. F. Chladni. Entdeckungen über die Theorie des Klanges , 1967 .
[6] George Polya,et al. On the characteristic frequencies of a symmetric membrane , 1955 .
[7] Steve Zelditch,et al. Inverse spectral problem for analytic domains, II: ℤ2-symmetric domains , 2009 .
[8] David L. Webb,et al. One cannot hear the shape of a drum , 1992, math/9207215.
[9] R. Benguria,et al. A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions , 1992 .
[10] Range of the first three eigenvalues of the planar Dirichlet Laplacian , 2002, math/0203231.
[11] M. Kac. Can One Hear the Shape of a Drum , 1966 .
[12] Jeng-Tzong Chen,et al. Eigensolutions of multiply connected membranes using the method of fundamental solutions , 2005 .
[13] Andreas Karageorghis,et al. The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation , 2001, Appl. Math. Lett..
[14] Edouard Oudet,et al. Numerical minimization of eigenmodes of a membrane with respect to the domain , 2004 .
[15] E. Terhardt. Pitch, consonance, and harmony. , 1974, The Journal of the Acoustical Society of America.
[16] C. Moler,et al. APPROXIMATIONS AND BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS , 1967 .
[17] Klaus-Dieter Semmler,et al. Some planar isospectral domains , 2010, 1005.1839.
[18] K. H. Chen,et al. The Boundary Collocation Method with Meshless Concept for Acoustic Eigenanalysis of Two-Dimensional Cavities Using Radial Basis Function , 2002 .
[19] C. B. Moler,et al. Bounds for Eigenvalues and Eigenvectors of Symmetric Operators , 1968 .
[20] V. D. Kupradze,et al. The method of functional equations for the approximate solution of certain boundary value problems , 1964 .
[21] G. Mey. Calculation of eigenvalues of the Helmholtz equation by an integral equation , 1976 .
[22] R. Courant,et al. Methods of Mathematical Physics , 1962 .
[23] E. Terhardt,et al. Pitch of complex signals according to virtual‐pitch theory: Tests, examples, and predictions , 1982 .
[24] Elliptical membranes with smallest second eigenvalue , 1973 .
[25] H. Weyl. Ramifications, old and new, of the eigenvalue problem , 1950 .
[26] C. S. Chen,et al. A new method of fundamental solutions applied to nonhomogeneous elliptic problems , 2005, Adv. Comput. Math..
[27] Lloyd N. Trefethen,et al. Reviving the Method of Particular Solutions , 2005, SIAM Rev..
[28] G. Pólya,et al. ON THE RATIO OF CONSECUTIVE EIGENVALUES , 1956 .
[29] R. Benguria,et al. Proof of the Payne-Pólya-Weinberger conjecture , 1991 .
[30] Antoine Henrot,et al. Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .
[31] Carlos J. S. Alves,et al. The Method of Fundamental Solutions Applied to the Calculation of Eigenfrequencies and Eigenmodes of 2D Simply Connected Shapes , 2005 .
[32] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .
[33] D. R. Heath-Brown,et al. The Theory of the Riemann Zeta-Function , 1987 .
[34] L. Rayleigh,et al. The theory of sound , 1894 .
[35] Braxton Osting,et al. Optimization of spectral functions of Dirichlet-Laplacian eigenvalues , 2010, J. Comput. Phys..