Repulsive surfaces

Functionals that penalize bending or stretching of a surface play a key role in geometric and scientific computing, but to date have ignored a very basic requirement: in many situations, surfaces must not pass through themselves or each other. This paper develops a numerical framework for optimization of surface geometry while avoiding (self-)collision. The starting point is the tangent-point energy, which effectively pushes apart pairs of points that are close in space but distant along the surface. We develop a discretization of this energy for triangle meshes, and introduce a novel acceleration scheme based on a fractional Sobolev inner product. In contrast to similar schemes developed for curves, we avoid the complexity of building a multiresolution mesh hierarchy by decomposing our preconditioner into two ordinary Poisson equations, plus forward application of a fractional differential operator. We further accelerate this scheme via hierarchical approximation, and describe how to incorporate a variety of constraints (on area, volume, etc.). Finally, we explore how this machinery might be applied to problems in mathematical visualization, geometric modeling, and geometry processing.

[1]  Scott Schaefer,et al.  Isometry‐Aware Preconditioning for Mesh Parameterization , 2017, Comput. Graph. Forum.

[2]  Peter Schröder,et al.  Constrained willmore surfaces , 2021, ACM Trans. Graph..

[3]  Martin Rumpf,et al.  A finite element method for surface restoration with smooth boundary conditions , 2004, Comput. Aided Geom. Des..

[4]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[5]  R. Giryes,et al.  Point2Mesh , 2020 .

[6]  Robert J. Renka,et al.  Minimal Surfaces and Sobolev Gradients , 1995, SIAM J. Sci. Comput..

[7]  Patrick Schmidt,et al.  Inter-surface maps via constant-curvature metrics , 2020, ACM Trans. Graph..

[8]  Collision Detection and Response for Computer Animation , 1988, SIGGRAPH 1988.

[9]  Daniele Panozzo,et al.  Simplicial complex augmentation framework for bijective maps , 2017, ACM Trans. Graph..

[10]  Carlo H. Séquin,et al.  Functional optimization for fair surface design , 1992, SIGGRAPH.

[11]  Daniel Cohen-Or,et al.  Point2Mesh , 2020, ACM Trans. Graph..

[12]  D. M,et al.  A level set formulation for Willmore flow , 2004 .

[13]  Simon Blatt,et al.  THE ENERGY SPACES OF THE TANGENT POINT ENERGIES , 2013 .

[14]  Lin Shi,et al.  A fast multigrid algorithm for mesh deformation , 2006, SIGGRAPH 2006.

[15]  Leif Kobbelt,et al.  A remeshing approach to multiresolution modeling , 2004, SGP '04.

[16]  Dorin Bucur,et al.  Variational Methods in Shape Optimization Problems , 2005, Progress in Nonlinear Differential Equations and Their Applications.

[17]  Timothy R. Langlois,et al.  Incremental Potential Contact: Intersection- and Inversion-free, Large-Deformation Dynamics , 2020 .

[18]  Chenfanfu Jiang,et al.  Incremental potential contact , 2020, ACM Trans. Graph..

[19]  G. Buck,et al.  A simple energy function for knots , 1995 .

[20]  Henrik Schumacher,et al.  On $H^2$-gradient Flows for the Willmore Energy , 2017, 1703.06469.

[21]  Keenan Crane,et al.  Repulsive Curves , 2020, ACM Trans. Graph..

[22]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[23]  Keenan Crane,et al.  Discrete conformal equivalence of polyhedral surfaces , 2021, ACM Trans. Graph..

[24]  W. Hackbusch,et al.  Hierarchical Matrices: Algorithms and Analysis , 2015 .

[25]  Silvio Levy,et al.  Making waves : a guide to the ideas behind Outside in , 1995 .

[26]  D. Kaufman,et al.  Guaranteed globally injective 3D deformation processing , 2021, ACM Trans. Graph..

[27]  Michael H. Freedman,et al.  On the Mobius Energy of Knots and Unknots , 1994 .

[28]  George K. Francis A Topological Picturebook , 1988 .

[29]  Selim Esedoglu,et al.  Analogue of the Total Variation Denoising Model in the Context of Geometry Processing , 2009, Multiscale Model. Simul..

[30]  W. Bednorz,et al.  Analytic sphere eversion using ruled surfaces , 2017, Differential Geometry and its Applications.

[31]  Heiko von der Mosel,et al.  Tangent-Point Repulsive Potentials for a Class of Non-smooth m-dimensional Sets in ℝn. Part I: Smoothing and Self-avoidance Effects , 2011, 1102.3642.

[32]  Jean-Philippe Pons,et al.  Generalized Surface Flows for Mesh Processing , 2007 .

[33]  Hans-Peter Seidel,et al.  A Shrink Wrapping Approach to Remeshing Polygonal Surfaces , 1999, Comput. Graph. Forum.

[34]  Martin Rumpf,et al.  Time‐Discrete Geodesics in the Space of Shells , 2012, Comput. Graph. Forum.

[35]  David W. Wells The Penguin Dictionary of Curious and Interesting Numbers , 1986 .

[36]  Michael Holst,et al.  Efficient mesh optimization schemes based on Optimal Delaunay Triangulations , 2011 .

[37]  Keenan Crane,et al.  Digital geometry processing with discrete exterior calculus , 2013, SIGGRAPH '13.

[38]  Keenan Crane,et al.  Robust fairing via conformal curvature flow , 2013, ACM Trans. Graph..

[39]  Yaron Lipman,et al.  Accelerated quadratic proxy for geometric optimization , 2016, ACM Trans. Graph..

[40]  Shinji Fukuhara,et al.  ENERGY OF A KNOT , 1988 .

[41]  Tobias Martin,et al.  Efficient Non‐linear Optimization via Multi‐scale Gradient Filtering , 2013, Comput. Graph. Forum.

[42]  Olga Sorkine-Hornung,et al.  Interference-aware geometric modeling , 2011, ACM Trans. Graph..

[43]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[44]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[45]  J. Sullivan,et al.  MÖBIUS-INVARIANT KNOT ENERGIES , 1998 .

[46]  Alec Jacobson,et al.  Nested cages , 2015, ACM Trans. Graph..

[47]  Eitan Grinspun,et al.  Asynchronous contact mechanics , 2009, ACM Trans. Graph..

[48]  Tae-Yong Kim,et al.  Air meshes for robust collision handling , 2015, ACM Trans. Graph..

[49]  Fernando C. Marques,et al.  Min-Max theory and the Willmore conjecture , 2012, 1202.6036.

[50]  E. Giusti Minimal Surfaces with Obstacles , 2010 .

[51]  C. Séquin,et al.  Energy Minimizers for Curvature-Based Surface Functionals , 2007 .

[52]  Mario Botsch,et al.  Adaptive Remeshing for Real-Time Mesh Deformation , 2013, Eurographics.

[53]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[54]  Scott Schaefer,et al.  Bijective parameterization with free boundaries , 2015, ACM Trans. Graph..

[55]  Simon Blatt,et al.  Regularity theory for tangent-point energies: The non-degenerate sub-critical case , 2012, 1208.3605.

[56]  Jun O'Hara,et al.  Energy of a knot , 1991 .

[57]  Peter Schröder,et al.  Discrete Willmore flow , 2005, SIGGRAPH Courses.

[58]  Robert Bridson,et al.  Blended cured quasi-newton for distortion optimization , 2018, ACM Trans. Graph..

[59]  Gerhard Dziuk,et al.  Computational parametric Willmore flow , 2008, Numerische Mathematik.

[60]  Fuzhen Zhang The Schur complement and its applications , 2005 .

[61]  Michael M. Kazhdan,et al.  Can Mean‐Curvature Flow be Modified to be Non‐singular? , 2012, Comput. Graph. Forum.

[62]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[63]  Constrained Willmore surfaces , 2004, math/0411479.

[64]  Leonidas J. Guibas,et al.  A unified discrete framework for intrinsic and extrinsic Dirac operators for geometry processing , 2018, Comput. Graph. Forum.

[65]  Peter Schröder,et al.  Shape from metric , 2018, ACM Trans. Graph..

[66]  M. Kwasnicki,et al.  Ten equivalent definitions of the fractional laplace operator , 2015, 1507.07356.

[67]  Atsushi Ishii Moves and invariants for knotted handlebodies , 2008 .

[68]  Glenn G. Chappell,et al.  The Minimax Sphere Eversion , 1995, VisMath.

[69]  Paweł Strzelecki,et al.  Geometric curvature energies: facts, trends, and open problems , 2017 .

[70]  Masaaki Suzuki,et al.  A TABLE OF GENUS TWO HANDLEBODY-KNOTS UP TO SIX CROSSINGS , 2012 .

[71]  M. Droske,et al.  A level set formulation for Willmore flow , 2004 .