Repulsive surfaces
暂无分享,去创建一个
Keenan Crane | Chris Yu | Henrik Schumacher | Caleb Brakensiek | Keenan Crane | Henrik Schumacher | H. Schumacher | Christopher Yu | Caleb Brakensiek
[1] Scott Schaefer,et al. Isometry‐Aware Preconditioning for Mesh Parameterization , 2017, Comput. Graph. Forum.
[2] Peter Schröder,et al. Constrained willmore surfaces , 2021, ACM Trans. Graph..
[3] Martin Rumpf,et al. A finite element method for surface restoration with smooth boundary conditions , 2004, Comput. Aided Geom. Des..
[4] Ulrich Pinkall,et al. Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..
[5] R. Giryes,et al. Point2Mesh , 2020 .
[6] Robert J. Renka,et al. Minimal Surfaces and Sobolev Gradients , 1995, SIAM J. Sci. Comput..
[7] Patrick Schmidt,et al. Inter-surface maps via constant-curvature metrics , 2020, ACM Trans. Graph..
[8] Collision Detection and Response for Computer Animation , 1988, SIGGRAPH 1988.
[9] Daniele Panozzo,et al. Simplicial complex augmentation framework for bijective maps , 2017, ACM Trans. Graph..
[10] Carlo H. Séquin,et al. Functional optimization for fair surface design , 1992, SIGGRAPH.
[11] Daniel Cohen-Or,et al. Point2Mesh , 2020, ACM Trans. Graph..
[12] D. M,et al. A level set formulation for Willmore flow , 2004 .
[13] Simon Blatt,et al. THE ENERGY SPACES OF THE TANGENT POINT ENERGIES , 2013 .
[14] Lin Shi,et al. A fast multigrid algorithm for mesh deformation , 2006, SIGGRAPH 2006.
[15] Leif Kobbelt,et al. A remeshing approach to multiresolution modeling , 2004, SGP '04.
[16] Dorin Bucur,et al. Variational Methods in Shape Optimization Problems , 2005, Progress in Nonlinear Differential Equations and Their Applications.
[17] Timothy R. Langlois,et al. Incremental Potential Contact: Intersection- and Inversion-free, Large-Deformation Dynamics , 2020 .
[18] Chenfanfu Jiang,et al. Incremental potential contact , 2020, ACM Trans. Graph..
[19] G. Buck,et al. A simple energy function for knots , 1995 .
[20] Henrik Schumacher,et al. On $H^2$-gradient Flows for the Willmore Energy , 2017, 1703.06469.
[21] Keenan Crane,et al. Repulsive Curves , 2020, ACM Trans. Graph..
[22] Mark Meyer,et al. Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.
[23] Keenan Crane,et al. Discrete conformal equivalence of polyhedral surfaces , 2021, ACM Trans. Graph..
[24] W. Hackbusch,et al. Hierarchical Matrices: Algorithms and Analysis , 2015 .
[25] Silvio Levy,et al. Making waves : a guide to the ideas behind Outside in , 1995 .
[26] D. Kaufman,et al. Guaranteed globally injective 3D deformation processing , 2021, ACM Trans. Graph..
[27] Michael H. Freedman,et al. On the Mobius Energy of Knots and Unknots , 1994 .
[28] George K. Francis. A Topological Picturebook , 1988 .
[29] Selim Esedoglu,et al. Analogue of the Total Variation Denoising Model in the Context of Geometry Processing , 2009, Multiscale Model. Simul..
[30] W. Bednorz,et al. Analytic sphere eversion using ruled surfaces , 2017, Differential Geometry and its Applications.
[31] Heiko von der Mosel,et al. Tangent-Point Repulsive Potentials for a Class of Non-smooth m-dimensional Sets in ℝn. Part I: Smoothing and Self-avoidance Effects , 2011, 1102.3642.
[32] Jean-Philippe Pons,et al. Generalized Surface Flows for Mesh Processing , 2007 .
[33] Hans-Peter Seidel,et al. A Shrink Wrapping Approach to Remeshing Polygonal Surfaces , 1999, Comput. Graph. Forum.
[34] Martin Rumpf,et al. Time‐Discrete Geodesics in the Space of Shells , 2012, Comput. Graph. Forum.
[35] David W. Wells. The Penguin Dictionary of Curious and Interesting Numbers , 1986 .
[36] Michael Holst,et al. Efficient mesh optimization schemes based on Optimal Delaunay Triangulations , 2011 .
[37] Keenan Crane,et al. Digital geometry processing with discrete exterior calculus , 2013, SIGGRAPH '13.
[38] Keenan Crane,et al. Robust fairing via conformal curvature flow , 2013, ACM Trans. Graph..
[39] Yaron Lipman,et al. Accelerated quadratic proxy for geometric optimization , 2016, ACM Trans. Graph..
[40] Shinji Fukuhara,et al. ENERGY OF A KNOT , 1988 .
[41] Tobias Martin,et al. Efficient Non‐linear Optimization via Multi‐scale Gradient Filtering , 2013, Comput. Graph. Forum.
[42] Olga Sorkine-Hornung,et al. Interference-aware geometric modeling , 2011, ACM Trans. Graph..
[43] Mathieu Desbrun,et al. Discrete shells , 2003, SCA '03.
[44] Ronald Fedkiw,et al. Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.
[45] J. Sullivan,et al. MÖBIUS-INVARIANT KNOT ENERGIES , 1998 .
[46] Alec Jacobson,et al. Nested cages , 2015, ACM Trans. Graph..
[47] Eitan Grinspun,et al. Asynchronous contact mechanics , 2009, ACM Trans. Graph..
[48] Tae-Yong Kim,et al. Air meshes for robust collision handling , 2015, ACM Trans. Graph..
[49] Fernando C. Marques,et al. Min-Max theory and the Willmore conjecture , 2012, 1202.6036.
[50] E. Giusti. Minimal Surfaces with Obstacles , 2010 .
[51] C. Séquin,et al. Energy Minimizers for Curvature-Based Surface Functionals , 2007 .
[52] Mario Botsch,et al. Adaptive Remeshing for Real-Time Mesh Deformation , 2013, Eurographics.
[53] Piet Hut,et al. A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.
[54] Scott Schaefer,et al. Bijective parameterization with free boundaries , 2015, ACM Trans. Graph..
[55] Simon Blatt,et al. Regularity theory for tangent-point energies: The non-degenerate sub-critical case , 2012, 1208.3605.
[56] Jun O'Hara,et al. Energy of a knot , 1991 .
[57] Peter Schröder,et al. Discrete Willmore flow , 2005, SIGGRAPH Courses.
[58] Robert Bridson,et al. Blended cured quasi-newton for distortion optimization , 2018, ACM Trans. Graph..
[59] Gerhard Dziuk,et al. Computational parametric Willmore flow , 2008, Numerische Mathematik.
[60] Fuzhen Zhang. The Schur complement and its applications , 2005 .
[61] Michael M. Kazhdan,et al. Can Mean‐Curvature Flow be Modified to be Non‐singular? , 2012, Comput. Graph. Forum.
[62] Marc Alexa,et al. As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.
[63] Constrained Willmore surfaces , 2004, math/0411479.
[64] Leonidas J. Guibas,et al. A unified discrete framework for intrinsic and extrinsic Dirac operators for geometry processing , 2018, Comput. Graph. Forum.
[65] Peter Schröder,et al. Shape from metric , 2018, ACM Trans. Graph..
[66] M. Kwasnicki,et al. Ten equivalent definitions of the fractional laplace operator , 2015, 1507.07356.
[67] Atsushi Ishii. Moves and invariants for knotted handlebodies , 2008 .
[68] Glenn G. Chappell,et al. The Minimax Sphere Eversion , 1995, VisMath.
[69] Paweł Strzelecki,et al. Geometric curvature energies: facts, trends, and open problems , 2017 .
[70] Masaaki Suzuki,et al. A TABLE OF GENUS TWO HANDLEBODY-KNOTS UP TO SIX CROSSINGS , 2012 .
[71] M. Droske,et al. A level set formulation for Willmore flow , 2004 .