Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry

The effects of optical feedback (OF) in lasers have been observed since the early days of laser development. While OF can result in undesirable and unpredictable operation in laser systems, it can also cause measurable perturbations to the operating parameters, which can be harnessed for metrological purposes. In this work we exploit this ‘self-mixing’ effect to infer the emission spectrum of a semiconductor laser using a laser-feedback interferometer, in which the terminal voltage of the laser is used to coherently sample the reinjected field. We demonstrate this approach using a terahertz frequency quantum cascade laser operating in both single- and multiple-longitudinal mode regimes, and are able to resolve spectral features not reliably resolved using traditional Fourier transform spectroscopy. We also investigate quantitatively the frequency perturbation of individual laser modes under OF, and find excellent agreement with predictions of the excess phase equation central to the theory of lasers under OF.

[1]  A. Davies,et al.  Terahertz quantum cascade lasers with thin resonant-phonon depopulation active regions and surface-plasmon waveguides , 2013, 1303.3205.

[2]  Francesco P. Mezzapesa,et al.  Nanoscale Displacement Sensing Based on Nonlinear Frequency Mixing in Quantum Cascade Lasers , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  R. Horng,et al.  The Diagram of Feedback Regimes Revisited , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  David Engel,et al.  Laser Diode Modulation And Noise , 2016 .

[5]  Pascal Royer,et al.  Phase sensitive optical near-field mapping using frequency-shifted laser optical feedback interferometry. , 2008, Optics express.

[6]  T. M. Klapwijk,et al.  Antenna model for wire lasers. , 2006, Physical review letters.

[7]  Francesco P. Mezzapesa,et al.  Photo-generated metamaterials induce modulation of CW terahertz quantum cascade lasers , 2015, Scientific Reports.

[8]  Marcella Giovannini,et al.  Turn-key compact high temperature terahertz quantum cascade lasers: imaging and room temperature detection. , 2006, Optics express.

[9]  Julien Perchoux,et al.  Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer. , 2015, Applied optics.

[10]  Yah Leng Lim,et al.  Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout. , 2009, Optics express.

[11]  Guido Giuliani,et al.  Laser diode self-mixing technique for sensing applications , 2002 .

[12]  F. Kannari,et al.  Ultrahighly sensitive laser‐Doppler velocity meter with a diode‐pumped Nd:YVO4 microchip laser , 1995 .

[13]  Yah Leng Lim,et al.  Self-Mixing Interferometry With Terahertz Quantum Cascade Lasers , 2013, IEEE Sensors Journal.

[14]  G. Giuliani,et al.  Self-mixing laser diode vibrometer , 2003 .

[15]  T. Taimre,et al.  Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing , 2015 .

[16]  Yah Leng Lim,et al.  Self-mixing flow sensor using a monolithic VCSEL array with parallel readout. , 2009, Optics express.

[17]  Edmund H. Linfield,et al.  2.9THz quantum cascade lasers operating up to 70K in continuous wave , 2004 .

[18]  Bernd Krauskopf,et al.  Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers , 2005 .

[19]  Eric Gagnon,et al.  Laser range imaging using the self-mixing effect in a laser diode , 1999, IEEE Trans. Instrum. Meas..

[20]  G. Giuliani,et al.  Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect , 2004, IEEE Photonics Technology Letters.

[21]  Edmund H. Linfield,et al.  Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers , 2011 .

[22]  T M Klapwijk,et al.  Surface plasmon quantum cascade lasers as terahertz local oscillators. , 2008, Optics letters.

[23]  A. Chraplyvy,et al.  Regimes of feedback effects in 1.5-µm distributed feedback lasers , 1986 .

[24]  Edmund H. Linfield,et al.  Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser , 2016 .

[25]  Jesper Mørk,et al.  Chaos in semiconductor lasers with optical feedback: theory and experiment , 1992 .

[26]  M. Norgia,et al.  Laser diode linewidth measurement by means of self-mixing interferometry , 2000, IEEE Photonics Technology Letters.

[27]  Yidong Tan,et al.  Laser confocal feedback tomography and nano-step height measurement , 2013, Scientific Reports.

[28]  S. Donati,et al.  Responsivity and Noise of Self-Mixing Photodetection Schemes , 2011, IEEE Journal of Quantum Electronics.

[29]  Govind P. Agrawal,et al.  Optical-feedback-induced chaos and its control in multimode semiconductor lasers , 1994 .

[30]  D. Lenstra,et al.  Coherence collapse in single-mode semiconductor lasers due to optical feedback , 1985, IEEE Journal of Quantum Electronics.

[31]  Jianping Xie,et al.  Effect of external cavity length on self-mixing signals in a multilongitudinal-mode Fabry-Perot laser diode. , 2005, Applied optics.

[32]  Daan Lenstra,et al.  The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers , 1984 .

[33]  Yah Leng Lim,et al.  Terahertz imaging through self-mixing in a quantum cascade laser. , 2011, Optics letters.

[34]  Francesco P. Mezzapesa,et al.  Linewidth measurement of mid infrared quantum cascade laser by optical feedback interferometry , 2016 .

[35]  Francesco P. Mezzapesa,et al.  Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers , 2014 .

[36]  Daofu Han,et al.  Self-Mixing Speckle in an Erbium-Doped Fiber Ring Laser and Its Application to Velocity Sensing , 2007, IEEE Photonics Technology Letters.

[37]  H. Hübers,et al.  Real-time terahertz imaging through self-mixing in a quantum-cascade laser , 2016 .

[38]  Guido Giuliani,et al.  Linewidth enhancement factor of terahertz quantum cascade lasers , 2008 .

[39]  D. Kleinman,et al.  Discrimination against unwanted orders in the Fabry-Perot resonator , 1962 .

[40]  F F de Mul,et al.  Small laser Doppler velocimeter based on the self-mixing effect in a diode laser. , 1988, Applied optics.

[41]  Edmund H. Linfield,et al.  Coherent three-dimensional terahertz imaging through self-mixing in a quantum cascade laser , 2013 .

[42]  Junichi Shimada,et al.  Voltage change across the self-coupled semiconductor laser , 1981 .

[44]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .

[45]  H. Hübers,et al.  Characterizing the beam properties of terahertz quantum-cascade lasers , 2014 .

[46]  David A. Ritchie,et al.  Terahertz quantum cascade laser as local oscillator in a heterodyne receiver. , 2005, Optics express.

[47]  K. Alan Shore,et al.  Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers , 2005 .

[48]  G. Giuliani,et al.  Laser diode feedback interferometer for measurement of displacements without ambiguity , 1995 .

[49]  Thomas Taimre,et al.  Demonstration of the self-mixing effect in interband cascade lasers , 2013 .

[50]  Edmund H. Linfield,et al.  Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis. , 2013, Optics express.

[51]  OPTICAL FEEDBACK EFFECTS ON SEMICONDUCTOR LASERS , 2016 .