A New Bayesian Nonparametric Mixture Model

We propose a new mixture model for Bayesian nonparametric inference. Rather than considering extensions from current approaches, such as the mixture of Dirichlet process model, we end up shrinking it, by making the weights less complex. We demonstrate the model and discuss its performance.

[1]  Antonio Lijoi,et al.  Bayesian Nonparametric Analysis for a Generalized Dirichlet Process Prior , 2005 .

[2]  Antonio Lijoi,et al.  Bayesian clustering in nonparametric hierarchical mixture models , 2006 .

[3]  S. MacEachern Estimating normal means with a conjugate style dirichlet process prior , 1994 .

[4]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[5]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[6]  M. Escobar Estimating Normal Means with a Dirichlet Process Prior , 1994 .

[7]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[8]  M. Stephens Bayesian analysis of mixture models with an unknown number of components- an alternative to reversible jump methods , 2000 .

[9]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[10]  P. Green,et al.  Modelling Heterogeneity With and Without the Dirichlet Process , 2001 .

[11]  S. MacEachern,et al.  Estimating mixture of dirichlet process models , 1998 .

[12]  Stephen G. Walker,et al.  Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..

[13]  Radford M. Neal Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[14]  Michael,et al.  On a Class of Bayesian Nonparametric Estimates : I . Density Estimates , 2008 .

[15]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[16]  G. Roberts,et al.  Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models , 2007, 0710.4228.

[17]  Ramsés H. Mena,et al.  Hierarchical Mixture Modeling With Normalized Inverse-Gaussian Priors , 2005 .

[18]  Steven N. MacEachern,et al.  Computational Methods for Mixture of Dirichlet Process Models , 1998 .

[19]  K. Roeder Density estimation with confidence sets exemplified by superclusters and voids in the galaxies , 1990 .