Athena Mars rover science investigation

[1] Each Mars Exploration Rover carries an integrated suite of scientific instruments and tools called the Athena science payload. The primary objective of the Athena science investigation is to explore two sites on the Martian surface where water may once have been present, and to assess past environmental conditions at those sites and their suitability for life. The remote sensing portion of the payload uses a mast called the Pancam Mast Assembly (PMA) that provides pointing for two instruments: the Panoramic Camera (Pancam), and the Miniature Thermal Emission Spectrometer (Mini-TES). Pancam provides high-resolution, color, stereo imaging, while Mini-TES provides spectral cubes at mid-infrared wavelengths. For in-situ study, a five degree-of-freedom arm called the Instrument Deployment Device (IDD) carries four more tools: a Microscopic Imager (MI) for close-up imaging, an Alpha Particle X-Ray Spectrometer (APXS) for elemental chemistry, a Mossbauer Spectrometer (MB) for the mineralogy of Fe-bearing materials, and a Rock Abrasion Tool (RAT) for removing dusty and weathered surfaces and exposing fresh rock underneath. The payload also includes magnets that allow the instruments to study the composition of magnetic Martian materials. All of the Athena instruments have undergone extensive calibration, both individually and using a set of geologic reference materials that are being measured with all the instruments. Using a MER-like rover and payload in a number of field settings, we have devised operations processes that will enable us to use the MER rovers to formulate and test scientific hypotheses concerning past environmental conditions and habitability at the landing sites.

[1]  C. Spitzer,et al.  The Viking magnetic properties experiment - Primary mission results. [on Mars landing sites , 1977 .

[2]  J. Pollack,et al.  Properties and effects of dust particles suspended in the Martian atmosphere , 1979 .

[3]  Lorraine Schnabel,et al.  Chemical composition of Martian fines , 1982 .

[4]  D. L. Anderson,et al.  Thermal emission spectrometer experiment: Mars Observer mission , 1992 .

[5]  Stephen M. Clifford,et al.  A model for the hydrologic and climatic behavior of water on Mars , 1993 .

[6]  S. Squyres,et al.  Early Mars: How Warm and How Wet? , 1994, Science.

[7]  J. M. Knudsen,et al.  The magnetic properties experiments on Mars Pathfinder , 1996 .

[8]  John H. Jones,et al.  The history of Martian volatiles , 1997 .

[9]  P. Christensen,et al.  Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration , 1997 .

[10]  Jimmy D Bell,et al.  Absorption and scattering properties of the Martian dust in the solar wavelengths. , 1997, Journal of geophysical research.

[11]  Mark T. Lemmon,et al.  Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder , 1999 .

[12]  J W Head,et al.  Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. , 1999, Science.

[13]  Richard V. Morris,et al.  Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples , 2000 .

[14]  M. Malin,et al.  Sedimentary rocks of early Mars. , 2000, Science.

[15]  Richard V. Morris,et al.  Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars , 2001 .

[16]  Richard V. Morris,et al.  Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic Martian dust? , 2001 .

[17]  David E. Smith,et al.  Ancient Geodynamics and Global-Scale Hydrology on Mars , 2001, Science.

[18]  Raymond E. Arvidson,et al.  Overview of the Mars Global Surveyor mission , 2001 .

[19]  Harry Y. McSween,et al.  Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars , 2002, Nature.

[20]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[21]  Robert L. Tokar,et al.  Global Distribution of Neutrons from Mars: Results from Mars Odyssey , 2002, Science.

[22]  N. O. Snider,et al.  Mantled and exhumed terrains in Terra Meridiani, Mars , 2002 .

[23]  Jean Braun,et al.  Modeling postbreakup landscape development and denudational history across the southeast African (Drakensberg Escarpment) margin , 2002 .

[24]  Kenneth L. Tanaka,et al.  Exploring Gusev Crater with spirit: Review of science objectives and testable hypotheses , 2003 .

[25]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[26]  M. Klimesh,et al.  Mars Exploration Rover engineering cameras , 2003 .

[27]  M. Malin,et al.  Early Results from the Odyssey THEMIS Investigation , 2003 .

[28]  Raymond E. Arvidson,et al.  Rock Abrasion Tool: Mars Exploration Rover mission , 2003 .

[29]  U. Bonnes,et al.  Athena MIMOS II Mossbauer spectrometer investigation , 2003 .

[30]  Steven W. Squyres,et al.  The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers , 2003 .

[31]  J. Bandfield,et al.  Spectroscopic Identification of Carbonate Minerals in the Martian Dust , 2003, Science.

[32]  Per Nornberg,et al.  Magnetic Properties Experiments on the Mars Exploration Rover mission , 2003 .

[33]  Miles J. Johnson,et al.  Athena Microscopic Imager investigation , 2003 .

[34]  Raymond E. Arvidson,et al.  Physical properties and localization investigations associated with the 2003 Mars Exploration rovers , 2003 .

[35]  Thomas E. Wolverton,et al.  Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers , 2003 .

[36]  N. Bridges,et al.  Selection of the Mars Exploration Rover landing sites , 2003 .

[37]  Raymond E. Arvidson,et al.  2001 Mars Odyssey Mission Summary , 2004 .