On the relative strength of split, triangle and quadrilateral cuts

Integer programs defined by two equations with two free integer variables and nonnegative continuous variables have three types of nontrivial facets: split, triangle or quadrilateral inequalities. In this paper, we compare the strength of these three families of inequalities. In particular we study how well each family approximates the integer hull. We show that, in a well defined sense, triangle inequalities provide a good approximation of the integer hull. The same statement holds for quadrilateral inequalities. On the other hand, the approximation produced by split inequalities may be arbitrarily bad.

[1]  Gérard Cornuéjols,et al.  On the Facets of Mixed Integer Programs with Two Integer Variables and Two Constraints , 2008, LATIN.

[2]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[3]  Laurence A. Wolsey,et al.  Lifting Integer Variables in Minimal Inequalities Corresponding to Lattice-Free Triangles , 2008, IPCO.

[4]  Michel X. Goemans,et al.  Worst-case comparison of valid inequalities for the TSP , 1995, Math. Program..

[5]  Daniel G. Espinoza Computing with Multi-row Gomory Cuts , 2008, IPCO.

[6]  Robert R. Meyer,et al.  On the existence of optimal solutions to integer and mixed-integer programming problems , 1974, Math. Program..

[7]  L. Wolsey,et al.  Cutting Planes form Two Rows of a Simplex Tableau , 2007 .

[8]  Egon Balas,et al.  Optimizing over the split closure , 2008, Math. Program..

[9]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[10]  Laurence A. Wolsey,et al.  A recursive procedure to generate all cuts for 0–1 mixed integer programs , 1990, Math. Program..

[11]  Egon Balas,et al.  Intersection Cuts - A New Type of Cutting Planes for Integer Programming , 1971, Oper. Res..

[12]  Laurence A. Wolsey,et al.  Aggregation and Mixed Integer Rounding to Solve MIPs , 2001, Oper. Res..

[13]  Gérard Cornuéjols,et al.  On the facets of mixed integer programs with two integer variables and two constraints , 2008, Math. Program..

[14]  William J. Cook,et al.  Chvátal closures for mixed integer programming problems , 1990, Math. Program..

[15]  Richard S. Varga,et al.  Proof of Theorem 5 , 1983 .

[16]  Gérard Cornuéjols,et al.  Minimal Valid Inequalities for Integer Constraints , 2009, Math. Oper. Res..

[17]  Laurence A. Wolsey,et al.  Lifting integer variables in minimal inequalities corresponding , 2008 .

[18]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[19]  R. Varga,et al.  Proof of Theorem 4 , 1983 .

[20]  X GoemansMichel Worst-case comparison of valid inequalities for the TSP , 1995 .

[21]  Claus-Peter Schnorr,et al.  Geometry of Numbers and Integer Programming (Summary) , 1988, STACS.

[22]  Laurence A. Wolsey,et al.  Inequalities from Two Rows of a Simplex Tableau , 2007, IPCO.

[23]  Andrea Lodi,et al.  On the MIR Closure of Polyhedra , 2007, IPCO.

[24]  Ellis L. Johnson,et al.  Solving Large-Scale Zero-One Linear Programming Problems , 1983, Oper. Res..