Prediction of interaction between small molecule and enzyme using AdaBoost

[1]  Guo-Zheng Li,et al.  Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins , 2008, Molecular Diversity.

[2]  Bing Niu,et al.  Predicting subcellular localization with AdaBoost Learner. , 2008, Protein and peptide letters.

[3]  Tongliang Zhang,et al.  Using Chou’s pseudo amino acid composition based on approximate entropy and an ensemble of AdaBoost classifiers to predict protein subnuclear location , 2008, Amino Acids.

[4]  Christian von Mering,et al.  STITCH: interaction networks of chemicals and proteins , 2007, Nucleic Acids Res..

[5]  Yu-Dong Cai,et al.  Metabolic Pathway Modeling by Using the Nearest Neighbor Algorithm , 2007 .

[6]  Xin Qin,et al.  Study of the feasibility of distinguishing cigarettes of different brands using an Adaboost algorithm and near-infrared spectroscopy , 2007, Analytical and bioanalytical chemistry.

[7]  Michael F. McNitt-Gray,et al.  Automated classification of lung bronchovascular anatomy in CT using AdaBoost , 2007, Medical Image Anal..

[8]  Ying Zhang,et al.  HMDB: the Human Metabolome Database , 2007, Nucleic Acids Res..

[9]  Hong Yan,et al.  PromoterExplorer: an effective promoter identification method based on the AdaBoost algorithm , 2006, Bioinform..

[10]  Kuo-Chen Chou,et al.  Predicting networking couples for metabolic pathways of Arabidopsis , 2006 .

[11]  Kuo-Chen Chou,et al.  Predicting protein structural class with AdaBoost Learner. , 2006, Protein and peptide letters.

[12]  K. Chou,et al.  Using LogitBoost classifier to predict protein structural classes. , 2006, Journal of theoretical biology.

[13]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[14]  Peter D. Karp,et al.  MetaCyc: a multiorganism database of metabolic pathways and enzymes , 2005, Nucleic Acids Res..

[15]  Charles E. Heckler,et al.  Applied Multivariate Statistical Analysis , 2005, Technometrics.

[16]  Kuo-Chen Chou,et al.  Prediction of Membrane Protein Types by Incorporating Amphipathic Effects , 2005, J. Chem. Inf. Model..

[17]  Catherine Brooksbank,et al.  The European Bioinformatics Institute's data resources: towards systems biology , 2004, Nucleic Acids Res..

[18]  Kuo-Chen Chou,et al.  Predicting protein structural class by functional domain composition. , 2004, Biochemical and biophysical research communications.

[19]  Y. Mansour,et al.  Generalization bounds for averaged classifiers , 2004, math/0410092.

[20]  K. Chou,et al.  Support vector machines for predicting membrane protein types by using functional domain composition. , 2003, Biophysical journal.

[21]  Yu-Dong Cai,et al.  Support vector machines for prediction of protein domain structural class. , 2003, Journal of theoretical biology.

[22]  Kuo-Chen Chou,et al.  Artificial Neural Network Method for Predicting Protein Secondary Structure Content , 2002, Comput. Chem..

[23]  K. Chou,et al.  Support vector machines for predicting the specificity of GalNAc-transferase , 2002, Peptides.

[24]  Kuo-Chen Chou,et al.  Support vector machines for predicting HIV protease cleavage sites in protein , 2002, J. Comput. Chem..

[25]  R. King,et al.  New approach to pharmacophore mapping and QSAR analysis using inductive logic programming. Application to thermolysin inhibitors and glycogen phosphorylase B inhibitors. , 2002, Journal of medicinal chemistry.

[26]  J M Thornton,et al.  Small-molecule metabolism: an enzyme mosaic. , 2001, Trends in biotechnology.

[27]  K. Chou,et al.  Artificial Neural Network Model for Predicting Membrane Protein Types , 2001, Journal of biomolecular structure & dynamics.

[28]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[29]  D Haussler,et al.  Knowledge-based analysis of microarray gene expression data by using support vector machines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[30]  I. Muchnik,et al.  Recognition of a protein fold in the context of the Structural Classification of Proteins (SCOP) classification. , 1999, Proteins.

[31]  I. Muchnik,et al.  Recognition of a protein fold in the context of the SCOP classification , 1999 .

[32]  Pierre Tufféry,et al.  PredAcc: prediction of solvent accessibility , 1999, Bioinform..

[33]  Panu Somervuo,et al.  Self-organizing maps of symbol strings , 1998, Neurocomputing.

[34]  G. Tusnády,et al.  Principles governing amino acid composition of integral membrane proteins: application to topology prediction. , 1998, Journal of molecular biology.

[35]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[36]  Yoav Freund,et al.  Large Margin Classification Using the Perceptron Algorithm , 1998, COLT' 98.

[37]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[38]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[39]  Samuel Kaski,et al.  Self-Organized Formation of Various Invariant-Feature Filters in the Adaptive-Subspace SOM , 1997, Neural Computation.

[40]  K. Chou,et al.  Classification and Prediction of β-Turn Types , 1997, Journal of protein chemistry.

[41]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[42]  Yoav Freund,et al.  Boosting the margin: A new explanation for the effectiveness of voting methods , 1997, ICML.

[43]  M. Page,et al.  Organic and Bio-organic Mechanisms , 1997 .

[44]  Timothy D. H. Bugg,et al.  Introduction to Enzyme and Coenzyme Chemistry , 1997 .

[45]  P. Argos,et al.  Seventy‐five percent accuracy in protein secondary structure prediction , 1997, Proteins.

[46]  H. Eun Enzymology Primer for Recombinant DNA Technology , 1996 .

[47]  C. Heckler Applied Discriminant Analysis , 1995 .

[48]  金田 重郎,et al.  C4.5: Programs for Machine Learning (書評) , 1995 .

[49]  K. Chou A novel approach to predicting protein structural classes in a (20–1)‐D amino acid composition space , 1995, Proteins.

[50]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[51]  J. L. Hodges,et al.  Discriminatory Analysis - Nonparametric Discrimination: Consistency Properties , 1989 .

[52]  H. Dugas Bioorganic Chemistry: A Chemical Approach to Enzyme Action , 1989 .

[53]  T. Creighton Proteins: Structures and Molecular Properties , 1986 .

[54]  D. Metzler,et al.  Biochemistry: The Chemical Reactions of Living Cells , 1977 .

[55]  Dustin Boswell,et al.  Introduction to Support Vector Machines , 2002 .

[56]  K. Chou,et al.  Support vector machines for prediction of protein subcellular location by incorporating quasi‐sequence‐order effect , 2002, Journal of cellular biochemistry.

[57]  Kuo-Chen Chou,et al.  Artificial Neural Network Model for Predicting Protein Subcellular Location , 2002, Comput. Chem..

[58]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[59]  Susumu Goto,et al.  LIGAND: chemical database of enzyme reactions , 2000, Nucleic Acids Res..

[60]  K. Chou,et al.  Prediction of membrane protein types and subcellular locations , 1999, Proteins.

[61]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[62]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[63]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[64]  A V Finkelstein,et al.  The classification and origins of protein folding patterns. , 1990, Annual review of biochemistry.

[65]  Teuvo Kohonen,et al.  An introduction to neural computing , 1988, Neural Networks.

[66]  M. L. Bender,et al.  Catalysis and Enzyme Action , 1973 .

[67]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.