Microstructure, mechanical and anti-ablation properties of Mg-modified C/C–ZrC–SiC composites prepared by sol-gel technology

[1]  Qizhong Huang,et al.  Ablation Behaviour and Mechanism of Mg Modified Zrc-Sic Composite in Plasma Ablation Flame , 2022, SSRN Electronic Journal.

[2]  Q. Fu,et al.  Ablation behavior under oxyacetylene torch of ZrC coating modified by SiC/TaC nanocomposites , 2022, Corrosion Science.

[3]  K. Ogawa,et al.  Effect of the Y2O3 amount on the oxidation behavior of ZrB2-SiC-based coatings for carbon/carbon composites , 2022, Journal of the European Ceramic Society.

[4]  Zhaoju Yu,et al.  Single-source-precursor synthesis and phase evolution of NbC-SiC-C ceramic nanocomposites with core-shell structured NbC@C and SiC@C nanoparticles , 2021, Advanced Powder Materials.

[5]  Q. Fu,et al.  Ablation resistant ZrC coating modified by polymer-derived SiC/TiC nanocomposites for ultra-high temperature application , 2021, Journal of the European Ceramic Society.

[6]  Qizhong Huang,et al.  Effect of MgCl2 addition on the preparation of ZrC–SiC composite particles by sol-gel , 2021, Ceramics International.

[7]  Qizhong Huang,et al.  Microstructure and ablation behavior of Zr-Ti-Si-C multiphase coating fabricated by solid solution and in-situ reaction , 2021, Corrosion Science.

[8]  D. Karunakar,et al.  Influence of MgO addition on mechanical and ablation characteristics of ZrB2–SiC composites developed through microwave sintering , 2021, Journal of Materials Science.

[9]  Xiaodong Wang,et al.  The effect of carbon source addition order during sol-gel process on the properties of C/C–ZrC–SiC composites , 2021, Ceramics International.

[10]  Dongyang Zhang,et al.  Ablation behavior and mechanisms of 3D Cf/ZrB2-SiC composite applied in long-term temperature up to 2400 °C , 2021 .

[11]  Wei Sun,et al.  Comparative insights into C/C–ZrC–SiC composites with different substrate carbon on microstructures, mechanical properties, and ablation behaviors , 2021 .

[12]  C. Rao,et al.  Evaluation of oxidation resistant SiC-ZrB2 composite interlayer for plasma sprayed Y2O3 coating over graphite , 2021 .

[13]  Qizhong Huang,et al.  Ablative Property and Mechanism of ZrC-TaC/ZrC-SiC Coatings on C/C Composites under Different Heat Fluxes , 2021, Journal of Thermal Spray Technology.

[14]  Hejun Li,et al.  Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites , 2021 .

[15]  K. He,et al.  Improving the sinterability of ZrC–SiC composite powders by Mg addition , 2021, Ceramics International.

[16]  Xinghong Zhang,et al.  Enhanced mechanical properties and thermal shock resistance of Cf/ZrB2-SiC composite via an efficient slurry injection combined with vibration-assisted vacuum infiltration , 2020, Journal of the European Ceramic Society.

[17]  Q. Miao,et al.  High temperature oxidation resistance of Y2O3 modified ZrB2-SiC coating for carbon/carbon composites , 2020, Ceramics International.

[18]  Qizhong Huang,et al.  Effect of ZrC particle distribution on the ablation resistance of C/C-SiC-ZrC composites fabricated using precursor infiltration pyrolysis , 2020 .

[19]  K. He,et al.  Effects of LaB6 on the microstructures and ablation properties of 3D C/C-SiC-ZrB2-LaB6 composites , 2020 .

[20]  Wei Sun,et al.  Ultra-high-temperature ablation behavior of SiC–ZrC–TiC modified carbon/carbon composites fabricated via reactive melt infiltration , 2020 .

[21]  Hejun Li,et al.  Effects of ZrC/SiC ratios on mechanical and ablation behavior of C/C–ZrC–SiC composites prepared by carbothermal reaction of hydrothermal co-deposited oxides , 2020 .

[22]  Hui‐Ming Cheng,et al.  Mechanical, oxidation and ablation properties of C/(C-SiC)CVI-(ZrC-SiC)PIP composites , 2020 .

[23]  J. Zou,et al.  Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs – a review , 2019, International Materials Reviews.

[24]  Ling-jun Guo,et al.  Effect of the Al2O3 additive on the high temperature ablation behavior of the ZrC–ZrO2 coating for SiC-coated carbon/carbon composites , 2019 .

[25]  Shaowei Zhang,et al.  Oxidation behaviors of MgO-C refractories with different Si/SiC ratio in the 1100–1500 °C range , 2019 .

[26]  K. He,et al.  Microstructure and ablation properties of La2O3 modified C/C-SiC composites prepared via precursor infiltration pyrolysis , 2019, Journal of the European Ceramic Society.

[27]  Qizhong Huang,et al.  Fabrication and performance of micro-diamond modified C/SiC composites via precursor impregnation and pyrolysis process , 2018, Ceramics International.

[28]  W. Han,et al.  Thermal cycling resistance of ZrB2‒SiC coatings with MgO additive on SiC coated graphite , 2018 .

[29]  Jiabao Zhang,et al.  Microstructure and ablation mechanism of C/C-ZrC-SiC composites in a plasma flame , 2017 .

[30]  D. L. Myers,et al.  Vaporization coefficients of SiO2 and MgO , 2017 .

[31]  J. Mauro,et al.  Viscosity of glass‐forming systems , 2017 .

[32]  Qizhong Huang,et al.  Effects of oxidizing species on ablation behavior of C/C-ZrB2-ZrC-SiC composites prepared by precursor infiltration and pyrolysis , 2016 .

[33]  Hejun Li,et al.  Effects of high-temperature annealing on the microstructures and mechanical properties of C/C–ZrC–SiC composites prepared by precursor infiltration and pyrolysis , 2016 .

[34]  Liping Wang,et al.  Ablation mechanism of C/C–ZrB2–ZrC–SiC composite fabricated by polymer infiltration and pyrolysis with preform of Cf/ZrB2 , 2015 .

[35]  Hejun Li,et al.  Effect of SiC/ZrC ratio on the mechanical and ablation properties of C/C–SiC–ZrC composites , 2014 .

[36]  Wan-cheng Zhou,et al.  Mechanical and dielectric properties of 2.5D SiCf/SiC–Al2O3 composites prepared via precursor infiltration and pyrolysis , 2014 .

[37]  Rongjun Liu,et al.  Fabrication and properties of PIP 3D Cf/ZrC–SiC composites , 2014 .

[38]  A. Tok,et al.  Nanosize stabilization of cubic and tetragonal phases in reactive plasma synthesized zirconia powders , 2013 .

[39]  Kezhi Li,et al.  Effects of porous C/C density on the densification behavior and ablation property of C/C–ZrC–SiC composites , 2013 .

[40]  Jun Wang,et al.  Synthesis and pyrolysis of a novel preceramic polymer PZMS from PMS to fabricate high-temperature-resistant ZrC/SiC ceramic composite† , 2013 .

[41]  H. Hu,et al.  Mechanism of ablation of 3D C/ZrC–SiC composite under an oxyacetylene flame , 2013 .

[42]  Jian Zhang,et al.  First principles viscosity and derived models for MgO‐SiO2 melt system at high temperature , 2013 .

[43]  Hejun Li,et al.  Microstructure and ablation behaviors of integer felt reinforced C/C–SiC–ZrC composites prepared by a two-step method , 2012 .

[44]  H. Hu,et al.  A simple way to prepare precursors for zirconium carbide , 2010 .

[45]  S. Dong,et al.  Fabrication and Properties of C f /SiC-ZrC Composites , 2008 .

[46]  A. Kohyama,et al.  Effect of SiC particle dispersion on microstructure and mechanical properties of polymer-derived SiC/SiC composite , 2003 .

[47]  J. C. Ray,et al.  Chemical synthesis of nanocrystals of tantalum ion-doped tetragonal zirconia , 2002 .

[48]  M. Schütze,et al.  Materials for temperatures above 1500°C in oxidizing atmospheres. Part I: Basic considerations on materials selection , 2001 .

[49]  A. Marty,et al.  Thermodynamic analysis of molecular beam epitaxy of MgO(s) I. MgO vaporization by electron bombardment , 2000 .

[50]  D. Thompson,et al.  The Use of MgO as a densification aid for α-SiC , 1999 .

[51]  T. I. Barry,et al.  The calculation of phase equilibria of oxide core-concrete systems , 1993 .

[52]  Hejun Li,et al.  Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples , 2022 .