Effects of Coulomb and isospin symmetry breaking interactions on neutron-skin thickness

Both the Coulomb interaction and isospin symmetry breaking (ISB) parts of the nuclear interaction break the isospin symmetry in atomic nuclei. Effects of these two kinds of interaction on properties of atomic nuclei, especially, the mass difference of mirror nuclei and the neutron-skin thickness of $ N = Z $ and $ N \ne Z $ nuclei, are discussed. It is found that corrections to the Hartree-Fock-Slater approximation for the Coulomb interaction negligibly affect the neutron-skin thickness, while the charge-symmetry breaking term originating from the strong interaction might affect it non-negligibly. According to our calculations, the ISB terms other than the Coulomb interaction affect the estimation of the density dependence of the symmetry energy, $ L $, by about $ 0 $--$ 12 \, \mathrm{MeV} $ using the correlation with the neutron-skin thickness.

[1]  Thomas Jefferson National Accelerator Facility,et al.  Precision Determination of the Neutral Weak Form Factor of ^{48}Ca. , 2022, Physical review letters.

[2]  H. Sotani,et al.  New constraints on the neutron-star mass and radius relation from terrestrial nuclear experiments , 2022, 2203.05410.

[3]  H. Sagawa,et al.  Isospin symmetry breaking in the charge radius difference of mirror nuclei , 2022, Physical Review C.

[4]  W. Nazarewicz,et al.  Information content of the differences in the charge radii of mirror nuclei , 2022, Physical Review C.

[5]  H. Sagawa,et al.  Isovector density and isospin impurity in 40Ca , 2021, Physics Letters B.

[6]  S. Gandolfi,et al.  Trends of Neutron Skins and Radii of Mirror Nuclei from First Principles. , 2021, Physical review letters.

[7]  P. Ring,et al.  Charge radii in covariant density functional theory: A global view , 2021, Physical Review C.

[8]  H. Sagawa,et al.  Toward ab initio charge symmetry breaking in nuclear energy density functionals , 2021, Physical Review C.

[9]  W. Nazarewicz,et al.  Information Content of the Parity-Violating Asymmetry in ^{208}Pb. , 2021, Physical review letters.

[10]  M. Kortelainen,et al.  Solution of universal nonrelativistic nuclear DFT equations in the Cartesian deformed harmonic-oscillator basis. (IX) HFODD (3.06h): a new version of the program , 2021, Journal of Physics G: Nuclear and Particle Physics.

[11]  J. Napolitano,et al.  Accurate Determination of the Neutron Skin Thickness of ^{208}Pb through Parity-Violation in Electron Scattering. , 2021, Physical review letters.

[12]  G. Colò,et al.  Second and fourth moments of the charge density and neutron-skin thickness of atomic nuclei , 2021, Physical Review C.

[13]  Gianluca Colò,et al.  Isospin Symmetry Breaking Effects on the Mass-Radius Relation of a Neutron Star , 2021, Symmetry.

[14]  W. Nazarewicz,et al.  Nuclear charge densities in spherical and deformed nuclei: Toward precise calculations of charge radii , 2021, Physical Review C.

[15]  W. Satuła,et al.  Mirror energy differences in T=1/2f7/2 -shell nuclei within isospin-dependent density functional theory , 2020, 2010.06204.

[16]  H. Sagawa,et al.  Nuclear Symmetry Energy and the Breaking of the Isospin Symmetry: How Do They Reconcile with Each Other ? , 2020 .

[17]  G. Colò,et al.  Effects of finite nucleon size, vacuum polarization, and electromagnetic spin-orbit interaction on nuclear binding energies and radii in spherical nuclei , 2020, Physical Review C.

[18]  H. Sagawa,et al.  Collective excitations involving spin and isospin degrees of freedom , 2019 .

[19]  H. Sagawa,et al.  Double charge-exchange phonon states , 2019, Physical Review C.

[20]  H. Sakaguchi,et al.  Direct determination of the neutron skin thicknesses in $^{40,48}$Ca from proton elastic scattering at $E_p = 295$ MeV , 2018, 1810.11796.

[21]  G. Colò,et al.  Coulomb exchange functional with generalized gradient approximation for self-consistent Skyrme Hartree-Fock calculations , 2018, Physical Review C.

[22]  S. Samaddar,et al.  Correlations among symmetry energy elements in Skyrme models , 2018, International Journal of Modern Physics E.

[23]  G. Colò,et al.  Isospin mixing and Coulomb mixing in ground states of even-even nuclei , 2018, Physical Review C.

[24]  T. Mizusaki,et al.  Isoscalar neutron-proton pairing and SU(4)-symmetry breaking in Gamow-Teller transitions , 2018, Physical Review C.

[25]  X. Roca-Maza,et al.  Nuclear equation of state from ground and collective excited state properties of nuclei , 2018, Progress in Particle and Nuclear Physics.

[26]  H. Sagawa,et al.  Nuclear Symmetry Energy and the Breaking of the Isospin Symmetry: How Do They Reconcile with Each Other? , 2018, Physical review letters.

[27]  J. Dobaczewski,et al.  Isobaric multiplet mass equation within nuclear density functional theory , 2018, Journal of Physics G: Nuclear and Particle Physics.

[28]  Y. Sun,et al.  Generalized isobaric multiplet mass equation and its application to the Nolen-Schiffer anomaly , 2017, 1712.08986.

[29]  R. Akashi,et al.  Application of a Coulomb energy density functional for atomic nuclei: Case studies of local density approximation and generalized gradient approximation , 2017, 1712.06490.

[30]  T. Mizusaki,et al.  Isospin-symmetry breaking in superallowed Fermi β-decay due to isospin-nonconserving forces , 2017, 1708.08627.

[31]  W. Nazarewicz,et al.  Toward a global description of nuclear charge radii: Exploring the Fayans energy density functional , 2017, 1704.07430.

[32]  C. Zhang,et al.  Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis (III) hfbtho (v3.00): A new version of the program , 2017, Comput. Phys. Commun..

[33]  Xing Xu,et al.  The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures , 2017 .

[34]  J. Dobaczewski,et al.  Isospin-symmetry breaking in masses of $N\simeq Z$ nuclei , 2017, 1701.04628.

[35]  M. Baldo,et al.  The Nuclear Symmetry Energy , 2016, 1606.08838.

[36]  Y. Sun,et al.  Beyond Wigner's isobaric multiplet mass equation: Effect of charge-symmetry-breaking interaction and Coulomb polarization , 2016, Physical Review C.

[37]  K. Kaneko,et al.  Probing isospin-symmetry breaking with the modern storage rings and other advanced facilities , 2015 .

[38]  Haozhao Liang,et al.  Hidden pseudospin and spin symmetries and their origins in atomic nuclei , 2014, 1411.6774.

[39]  J. Hardy,et al.  Superallowed 0 + → 0 + nuclear β decays: 2014 critical survey, with precise results for V u d and CKM unitarity , 2014, 1411.5987.

[40]  T. Mizusaki,et al.  Isospin nonconserving interaction in the T =1 analogue states of the mass-70 region , 2014, 1403.4688.

[41]  W. Nazarewicz,et al.  Isospin-invariant Skyrme energy-density-functional approach with axial symmetry , 2014, 1403.2427.

[42]  R. Wiringa,et al.  Charge-symmetry breaking forces and isospin mixing in 8 Be , 2013, 1308.5670.

[43]  J. Dobaczewski,et al.  Energy-density-functional calculations including proton-neutron mixing , 2013, 1308.1997.

[44]  T. Mizusaki,et al.  Variation in displacement energies due to isospin-nonconserving forces. , 2013, Physical review letters.

[45]  P. Bortignon,et al.  Giant Quadrupole Resonances in 208Pb, the nuclear symmetry energy and the neutron skin thickness , 2012, 1212.4377.

[46]  M. Centelles,et al.  Density dependence of the symmetry energy from neutron skin thickness in finite nuclei , 2012, The European Physical Journal A.

[47]  W. Nazarewicz,et al.  Isospin-breaking corrections to superallowed Fermi beta-decay in isospin- and angular-momentum-projected nuclear Density Functional Theory , 2012, 1210.1128.

[48]  C. Horowitz,et al.  Impact of spin-orbit currents on the electroweak skin of neutron-rich nuclei , 2012, 1208.2249.

[49]  T. Mizusaki,et al.  Coulomb energy difference as a probe of isospin-symmetry breaking in the upper f p-shell nuclei. , 2012, Physical review letters.

[50]  H. Sagawa,et al.  New Skyrme interaction with improved spin-isospin properties , 2012, 1205.3958.

[51]  M. Centelles,et al.  Neutron skin of (208)Pb, nuclear symmetry energy, and the parity radius experiment. , 2011, Physical review letters.

[52]  G. Angelis,et al.  Isospin symmetry breaking at high spins in the mirror pair 67Se and 67As , 2010, 1011.5946.

[53]  M. Centelles,et al.  Origin of the neutron skin thickness of 208Pb in nuclear mean-field models , 2010, 1010.5396.

[54]  M. Yosoi,et al.  Neutron density distributions of [204],[206],[208]Pb deduced via proton elastic scattering at Ep=295MeV , 2010 .

[55]  J. Meng,et al.  Isospin corrections for superallowed Fermi β decay in self-consistent relativistic random-phase approximation approaches , 2009, 0904.3673.

[56]  S. Goriely,et al.  Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. IX: Constraint of pairing force to 1S0 neutron-matter gap , 2008, 0809.0447.

[57]  P. Danielewicz,et al.  Symmetry energy I: Semi-infinite matter , 2008, 0807.3743.

[58]  Stéphane Goriely,et al.  Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. VIII. Role of Coulomb exchange , 2008 .

[59]  E. Stephenson,et al.  Charge Symmetry Breaking and QCD , 2006, nucl-ex/0602021.

[60]  C. Ko,et al.  Nuclear matter symmetry energy and the neutron skin thickness of heavy nuclei , 2005, nucl-th/0509009.

[61]  H. Toki,et al.  Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei , 2005, nucl-th/0508020.

[62]  W. Nazarewicz,et al.  Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis. The program HFBTHO (v1.66p) , 2004, Comput. Phys. Commun..

[63]  T. Walcher,et al.  A coherent interpretation of the form factors of the nucleon in terms of a pion cloud and constituent quarks , 2003, hep-ph/0303054.

[64]  Paul-Henri Heenen,et al.  Self-consistent mean-field models for nuclear structure , 2003 .

[65]  B. A. Brown,et al.  Neutron radii in nuclei and the neutron equation of state. , 2000, Physical review letters.

[66]  B. A. Brown,et al.  Displacement energies with the Skyrme Hartree–Fock method , 2000 .

[67]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[68]  V. Shaginyan,et al.  Influence of Coulomb correlations on the location of drip line, single particle spectra and effective mass , 1999 .

[69]  W. Nazarewicz,et al.  Shape coexistence and the effective nucleon-nucleon interaction , 1999, nucl-th/9903037.

[70]  A. Bulgac,et al.  PROTON SINGLE PARTICLE ENERGY SHIFTS DUE TO COULOMB CORRELATIONS , 1999, nucl-th/9901100.

[71]  B. A. Brown,et al.  New Skyrme interaction for normal and exotic nuclei , 1998 .

[72]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[73]  A. Bulgac,et al.  A systematic surface contribution to the ground-state binding energies , 1996 .

[74]  H. Sagawa,et al.  Isospin mixing and the sum rule of super-allowed fermi β decay , 1995 .

[75]  Hamamoto,et al.  Gamow-Teller beta decay and isospin impurity in nuclei near the proton drip line. , 1993, Physical review. C, Nuclear physics.

[76]  Prakash,et al.  QCD sum rules in medium and the Okamoto-Nolen-Schiffer anomaly. , 1991, Physical review letters.

[77]  R. Machleidt,et al.  The Bonn Meson Exchange Model for the Nucleon Nucleon Interaction , 1987 .

[78]  N. Auerbach Coulomb effects in nuclear structure , 1983 .

[79]  M. Scadron,et al.  Two-pion exchange contributions to charge asymmetric and charge dependent nuclear forces , 1982 .

[80]  S. Shlomo Nuclear Coulomb energies , 1978 .

[81]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[82]  D. Brink,et al.  Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei , 1972 .

[83]  D. Brink,et al.  Hartree-Fock calculations with Skyrme's interaction , 1970 .

[84]  W. Myers,et al.  Average nuclear properties , 1969 .

[85]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[86]  K. Okamoto Coulomb energy of He3 and possible charge asymmetry of nuclear forces , 1964 .

[87]  J. C. Slater A Simplification of the Hartree-Fock Method , 1951 .

[88]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[89]  F. Kondev,et al.  The AME 2020 atomic mass evaluation (I). Evaluation of input data, and adjustment procedures , 2021, Chinese Physics C.

[90]  J. Dobaczewski,et al.  Isospin-symmetry breaking in masses of N ≃ Z nuclei , 2018 .

[91]  Gianluca Colò,et al.  Self-consistent RPA calculations with Skyrme-type interactions: The skyrme_rpa program , 2013, Comput. Phys. Commun..

[92]  I. Angeli,et al.  Table of experimental nuclear ground state charge radii: An update , 2013 .

[93]  E. Ferreira On the interaction of the elementary particles , 1961 .

[94]  T. Skyrme The effective nuclear potential , 1958 .

[95]  W. Heisenberg,et al.  Über den Bau der Atomkerne. I , 1932 .