Highly ordered staging structural interface between LiFePO4 and FePO4.

A highly ordered interface between LiFePO(4) phase and FePO(4) phase with staging structure along the a axis and perpendicular to the b axis direction has been observed for the first time, in a partially chemically delithiated Li(0.90)Nb(0.02)FePO(4) by advanced aberration-corrected annular-bright-field (ABF) scanning transmission electron microscopy (STEM).

[1]  Lijun Wu,et al.  A new in situ synchrotron X-ray diffraction technique to study the chemical delithiation of LiFePO4. , 2011, Chemical communications.

[2]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[3]  Marnix Wagemaker,et al.  The Role of Surface and Interface Energy on Phase Stability of Nanosized Insertion Compounds , 2009, Advanced materials.

[4]  Peter R. Slater,et al.  Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material , 2005 .

[5]  H. Sawada,et al.  Direct imaging of lithium atoms in LiV₂O₄ by spherical aberration-corrected electron microscopy. , 2010, Journal of electron microscopy.

[6]  John O. Thomas,et al.  Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mossbauer spectroscopy study , 2000 .

[7]  Si-Young Choi,et al.  Atomic-scale visualization of antisite defects in LiFePO4. , 2008, Physical review letters.

[8]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[9]  Haoshen Zhou,et al.  To draw an air electrode of a Li–air battery by pencil , 2011 .

[10]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[11]  Lixia Yuan,et al.  Development and challenges of LiFePO4 cathode material for lithium-ion batteries , 2011 .

[12]  Yang Shao-Horn,et al.  Atomic resolution of lithium ions in LiCoO2 , 2003, Nature materials.

[13]  Liquan Chen,et al.  First-principles study of Li ion diffusion in LiFePO4 , 2004 .

[14]  Marnix Wagemaker,et al.  Dynamic solubility limits in nanosized olivine LiFePO4. , 2011, Journal of the American Chemical Society.

[15]  Yan Yu,et al.  Direct Imaging of Lithium Ions Using Aberration-Corrected Annular-Bright-Field Scanning Transmission Electron Microscopy and Associated Contrast Mechanisms , 2011 .

[16]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[17]  Siqi Shi,et al.  Enhancement of electronic conductivity of LiFePO4 by cr doping and its identification by first-principles calculations , 2003 .

[18]  L. Allen,et al.  Prospects for lithium imaging using annular bright field scanning transmission electron microscopy: a theoretical study. , 2011, Ultramicroscopy.

[19]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[20]  Si-Young Choi,et al.  Orientation-dependent arrangement of antisite defects in lithium iron(II) phosphate crystals. , 2009, Angewandte Chemie.

[21]  Naoya Shibata,et al.  Robust atomic resolution imaging of light elements using scanning transmission electron microscopy , 2009 .

[22]  Siqi Shi,et al.  The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations , 2004 .

[23]  Xuejie Huang,et al.  Factors that affect activation energy for Li diffusion in LiFePO4: A first-principles investigation , 2010 .

[24]  Xiao‐Qing Yang,et al.  Investigation of the structural changes in Li1−xFePO4 upon charging by synchrotron radiation techniques , 2011 .

[25]  John O. Thomas,et al.  The source of first-cycle capacity loss in LiFePO4 , 2001 .

[26]  H. Ohta,et al.  Atomic structure of a CeO2 grain boundary: the role of oxygen vacancies. , 2010, Nano letters.

[27]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[28]  Lin Gu,et al.  Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries , 2013, Nature Communications.

[29]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[30]  Hong Li,et al.  Thermodynamic analysis on energy densities of batteries , 2011 .

[31]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[32]  Yong‐Sheng Hu,et al.  Atomic-scale investigation on lithium storage mechanism in TiNb2O7, , 2011 .

[33]  Linda F. Nazar,et al.  Proof of Supervalent Doping in Olivine LiFePO4 , 2008 .

[34]  Lin Gu,et al.  Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. , 2011, Journal of the American Chemical Society.

[35]  Eiji Abe,et al.  Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. , 2011, Nature materials.

[36]  C. Fisher,et al.  Real-time direct observation of Li in LiCoO2 cathode material , 2011 .

[37]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[38]  A. Yamada,et al.  Experimental visualization of lithium diffusion in LixFePO4. , 2008, Nature materials.