MaterialVis: material visualization tool using direct volume and surface rendering techniques.

Visualization of the materials is an indispensable part of their structural analysis. We developed a visualization tool for amorphous as well as crystalline structures, called MaterialVis. Unlike the existing tools, MaterialVis represents material structures as a volume and a surface manifold, in addition to plain atomic coordinates. Both amorphous and crystalline structures exhibit topological features as well as various defects. MaterialVis provides a wide range of functionality to visualize such topological structures and crystal defects interactively. Direct volume rendering techniques are used to visualize the volumetric features of materials, such as crystal defects, which are responsible for the distinct fingerprints of a specific sample. In addition, the tool provides surface visualization to extract hidden topological features within the material. Together with the rich set of parameters and options to control the visualization, MaterialVis allows users to visualize various aspects of materials very efficiently as generated by modern analytical techniques such as the Atom Probe Tomography.

[1]  Martin Kraus,et al.  Cell-projection of cyclic meshes , 2001, Proceedings Visualization, 2001. VIS '01..

[2]  P. Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, VVS.

[3]  Gunther H. Weber,et al.  Augmented Topological Descriptors of Pore Networks for Material Science , 2012, IEEE Transactions on Visualization and Computer Graphics.

[4]  Cláudio T. Silva,et al.  Hardware-assisted visibility sorting for unstructured volume rendering , 2005, IEEE Transactions on Visualization and Computer Graphics.

[5]  Hugues Hoppe,et al.  View-dependent refinement of progressive meshes , 1997, SIGGRAPH.

[6]  Robin Taylor,et al.  Mercury: visualization and analysis of crystal structures , 2006 .

[7]  Thomas Ertl,et al.  Smart Hardware-Accelerated Volume Rendering , 2003, VisSym.

[8]  Michael P. Garrity Raytracing irregular volume data , 1990, VVS.

[9]  Baptiste Gault,et al.  Atom probe crystallography , 2012 .

[10]  Martin Kraus,et al.  Hardware-based ray casting for tetrahedral meshes , 2003, IEEE Visualization, 2003. VIS 2003..

[11]  M. Bauer,et al.  Interactive volume on standard PC graphics hardware using multi-textures and multi-stage rasterization , 2000, Workshop on Graphics Hardware.

[12]  Ju Li,et al.  AtomEye: an efficient atomistic configuration viewer , 2003 .

[13]  T. Mikolajick,et al.  Sponge-like Si-SiO2 nanocomposite—Morphology studies of spinodally decomposed silicon-rich oxide , 2013 .

[14]  Martin Kraus,et al.  High-quality pre-integrated volume rendering using hardware-accelerated pixel shading , 2001, HWWS '01.

[15]  Nelson L. Max,et al.  Image-space visibility ordering for cell projection volume rendering of unstructured data , 2004, IEEE Transactions on Visualization and Computer Graphics.

[16]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[17]  Erhan Okuyan,et al.  Pattern information extraction from crystal structures , 2007, Comput. Phys. Commun..

[18]  Henrik Schulz,et al.  Comparison of different parallel implementations of the 2+1-dimensional KPZ model and the 3-dimensional KMC model , 2012, ArXiv.

[19]  Steven P. Callahan,et al.  A Survey of GPU-Based Volume Rendering of Unstructured Grids , 2005, RITA.

[20]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[21]  Peter Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, SIGGRAPH 1990.

[22]  Erhan Okuyan,et al.  BilKristal 2.0: A tool for pattern information extraction from crystal structures , 2014, Comput. Phys. Commun..

[23]  B. Schmidt,et al.  Formation and coarsening of sponge-like Si-SiO2 nanocomposites , 2013 .

[24]  Max A. Migliorato,et al.  Optimized Tersoff potential parameters for tetrahedrally bonded III-V semiconductors , 2007 .

[25]  C. Bulutay Quadrupolar spectra of nuclear spins in strained InGaAs quantum dots , 2011, 1111.1499.

[26]  Erhan Okuyan,et al.  Dynamic view-dependent visualization of unstructured tetrahedral volumetric meshes , 2012, J. Vis..

[27]  Erhan Okuyan,et al.  Direct volume rendering of unstructured tetrahedral meshes using CUDA and OpenMP , 2013, The Journal of Supercomputing.

[28]  Giorgio Biasiol,et al.  Compositional mapping of semiconductor quantum dots and rings , 2011 .

[29]  Kenneth Moreland,et al.  Tetrahedral projection using vertex shaders , 2002, Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH.

[30]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[31]  G. Davies The A nitrogen aggregate in diamond-its symmetry and possible structure , 1976 .

[32]  Ross T. Whitaker,et al.  A Streaming Narrow-Band Algorithm: Interactive Computation and Visualization of Level Sets , 2004, IEEE Trans. Vis. Comput. Graph..

[33]  A Kokalj,et al.  XCrySDen--a new program for displaying crystalline structures and electron densities. , 1999, Journal of molecular graphics & modelling.

[34]  Akio Koide,et al.  An Efficient Method of Triangulating Equi-Valued Surfaces by Using Tetrahedral Cells , 1991 .

[35]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[36]  P. Offermans,et al.  InAs Quantum Dot Formation Studied at the Atomic Scale by Cross-sectional Scanning Tunnelling Microscopy , 2008 .

[37]  Ross T. Whitaker,et al.  A streaming narrow-band algorithm: interactive computation and visualization of level sets , 2004, IEEE Transactions on Visualization and Computer Graphics.