Robust Growth-Optimal Portfolios

The growth-optimal portfolio is designed to have maximum expected log return over the next rebalancing period. Thus, it can be computed with relative ease by solving a static optimization problem. The growth-optimal portfolio has sparked fascination among finance professionals and researchers because it can be shown to outperform any other portfolio with probability 1 in the long run. In the short run, however, it is notoriously volatile. Moreover, its computation requires precise knowledge of the asset return distribution, which is not directly observable but must be inferred from sparse data. By using methods from distributionally robust optimization, we design fixed-mix strategies that offer similar performance guarantees as the growth-optimal portfolio but for a finite investment horizon and for a whole family of distributions that share the same first- and second-order moments. We demonstrate that the resulting robust growth-optimal portfolios can be computed efficiently by solving a tractable conic program whose size is independent of the length of the investment horizon. Simulated and empirical backtests show that the robust growth-optimal portfolios are competitive with the classical growth-optimal portfolio across most realistic investment horizons and for an overwhelming majority of contaminated return distributions. This paper was accepted by Yinyu Ye, optimization .

[1]  Antonio Alonso Ayuso,et al.  Introduction to Stochastic Programming , 2009 .

[2]  Neil D. Pearson,et al.  Risk measurement: an introduction to value at risk , 1996 .

[3]  W. Ziemba,et al.  Stochastic optimization models in finance , 2006 .

[4]  J. D. Jobson,et al.  Performance Hypothesis Testing with the Sharpe and Treynor Measures , 1981 .

[5]  M. Rubinstein. Continuously rebalanced investment strategies , 1991 .

[6]  Jonathan E. Ingersoll,et al.  Rowman & Littlefield studies in financial economics , 1987 .

[7]  A. Roy SAFETY-FIRST AND HOLDING OF ASSETS , 1952 .

[8]  J. Mossin EQUILIBRIUM IN A CAPITAL ASSET MARKET , 1966 .

[9]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[10]  N. H. Hakansson. MULTI-PERIOD MEAN-VARIANCE ANALYSIS: TOWARD A GENERAL THEORY OF PORTFOLIO CHOICE* , 1971 .

[11]  Xiaobo Li,et al.  Robustness to Dependency in Portfolio Optimization Using Overlapping Marginals , 2015, Oper. Res..

[12]  H. Markowitz Investment for the Long Run: New Evidence for an Old Rule , 1976 .

[13]  William T. Ziemba,et al.  The Symmetric Downside-Risk Sharpe Ratio , 2005 .

[14]  Zhaolin Hu,et al.  Kullback-Leibler divergence constrained distributionally robust optimization , 2012 .

[15]  R. C. Merton,et al.  Fallacy of the Log-normal Approximation to Optimal Portfolio Decision-making Over Many Periods , 2017 .

[16]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[17]  E. Thorp,et al.  The Kelly Capital Growth Investment Criterion: Theory and Practice , 2011 .

[18]  R. Roll,et al.  EVIDENCE ON THE “GROWTH-OPTIMUM” MODEL , 1973 .

[19]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[20]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[21]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[22]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[23]  Adam Tauman Kalai,et al.  Universal Portfolios With and Without Transaction Costs , 1997, COLT '97.

[24]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[25]  Daniel Kuhn,et al.  Worst-Case Value at Risk of Nonlinear Portfolios , 2013, Manag. Sci..

[26]  M. Christensen On the history of the Growth Optimal Portfolio Draft Version , 2005 .

[27]  John L. Kelly,et al.  A new interpretation of information rate , 1956, IRE Trans. Inf. Theory.

[28]  Compound-Return Mean-Variance Efficient Portfolios Never Risk Ruin , 1975 .

[29]  Stephen P. Boyd,et al.  Generalized Chebyshev Bounds via Semidefinite Programming , 2007, SIAM Rev..

[30]  László Györfi,et al.  Empirical Log-Optimal Portfolio Selections: a Survey , 2011 .

[31]  Melvyn Sim,et al.  TRACTABLE ROBUST EXPECTED UTILITY AND RISK MODELS FOR PORTFOLIO OPTIMIZATION , 2009 .

[32]  William T. Ziemba,et al.  Time to wealth goals in capital accumulation , 2005 .

[33]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[34]  D. Votaw Testing Compound Symmetry in a Normal Multivariate Distribution , 1948 .

[35]  David G. Luenberger,et al.  A preference foundation for log mean-variance criteria in portfolio choice problems , 1993 .

[36]  Richard O. Michaud The Markowitz Optimization Enigma: Is 'Optimized' Optimal? , 1989 .

[37]  F. Nogales,et al.  Size Matters: Optimal Calibration of Shrinkage Estimators for Portfolio Selection , 2011 .

[38]  Jean-Philippe Vial,et al.  Robust Optimization , 2021, ICORES.

[39]  Tomasz R. Bielecki,et al.  Risk sensitive asset management with transaction costs , 2000, Finance Stochastics.

[40]  Melvyn Sim,et al.  Distributionally Robust Optimization and Its Tractable Approximations , 2010, Oper. Res..

[41]  D. Luenberger,et al.  Analysis of the rebalancing frequency in log-optimal portfolio selection , 2010 .

[42]  Ioana Popescu,et al.  Robust Mean-Covariance Solutions for Stochastic Optimization , 2007, Oper. Res..

[43]  H. Latané Criteria for Choice Among Risky Ventures , 1959, Journal of Political Economy.

[44]  J. B. Williams Speculation and the Carryover , 1936 .

[45]  N. H. Hakansson. ON OPTIMAL MYOPIC PORTFOLIO POLICIES, WITH AND WITHOUT SERIAL CORRELATION OF YIELDS , 1971 .

[46]  T. Cover,et al.  Asymptotic optimality and asymptotic equipartition properties of log-optimum investment , 1988 .

[47]  W. Poundstone Fortune's Formula: The Untold Story of the Scientific Betting System That Beat the Casinos and Wall Street , 2005 .

[48]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[49]  T. Cover Universal Portfolios , 1996 .

[50]  L. Breiman Optimal Gambling Systems for Favorable Games , 1962 .

[51]  Javier Estrada Geometric Mean Maximization: An Overlooked Portfolio Approach? , 2010, The Journal of Investing.

[52]  P. Samuelson Risk and uncertainty: a fallacy of large numbers , 1963 .

[54]  M. Dempster,et al.  Financial markets. The joy of volatility , 2008 .

[55]  Kim-Chuan Toh,et al.  On the Implementation and Usage of SDPT3 – A Matlab Software Package for Semidefinite-Quadratic-Linear Programming, Version 4.0 , 2012 .

[56]  J. Lintner THE VALUATION OF RISK ASSETS AND THE SELECTION OF RISKY INVESTMENTS IN STOCK PORTFOLIOS AND CAPITAL BUDGETS , 1965 .

[57]  Daniel Kuhn,et al.  Distributionally Robust Convex Optimization , 2014, Oper. Res..

[58]  M. T. Greene,et al.  Long-term dependence in common stock returns , 1977 .

[59]  S. Pliska,et al.  OPTIMAL PORTFOLIO MANAGEMENT WITH FIXED TRANSACTION COSTS , 1995 .

[60]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[61]  E. Thorp Portfolio Choice and the Kelly Criterion , 1975 .

[62]  William T. Ziemba,et al.  Good and Bad Properties of the Kelly Criterion , 2003 .

[63]  Michael J. Todd,et al.  The many facets of linear programming , 2002, Math. Program..

[64]  K. Isii The extrema of probability determined by generalized moments (I) bounded random variables , 1960 .

[65]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[66]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[67]  L. Györfi,et al.  Machine Learning for Financial Engineering , 2012 .

[68]  Narasimhan Jegadeesh,et al.  Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency , 1993 .

[69]  P. Samuelson The Fundamental Approximation Theorem of Portfolio Analysis in terms of Means, Variances and Higher Moments , 1970 .

[70]  Laurent El Ghaoui,et al.  Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach , 2003, Oper. Res..

[71]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[72]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[73]  Daniel Kuhn,et al.  Distributionally robust joint chance constraints with second-order moment information , 2011, Mathematical Programming.

[74]  Yaoliang Yu,et al.  A General Projection Property for Distribution Families , 2009, NIPS.

[75]  R. Varga,et al.  Proof of Theorem 4 , 1983 .

[76]  A. Roy Safety first and the holding of assetts , 1952 .

[77]  P. Samuelson The "fallacy" of maximizing the geometric mean in long sequences of investing or gambling. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[79]  Giuseppe Carlo Calafiore,et al.  Parameter estimation with expected and residual-at-risk criteria , 2008, 2008 47th IEEE Conference on Decision and Control.

[80]  H. M. Markowitz Approximating Expected Utility by a Function of Mean and Variance , 2016 .

[81]  N. H. Hakansson. Capital Growth and the Mean-Variance Approach to Portfolio Selection , 1971, Journal of Financial and Quantitative Analysis.

[82]  Xuan Vinh Doan,et al.  Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion , 2010, Math. Oper. Res..

[83]  Christoph Memmel Performance Hypothesis Testing with the Sharpe Ratio , 2003 .

[84]  Mark Broadie,et al.  Computing efficient frontiers using estimated parameters , 1993, Ann. Oper. Res..

[85]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[86]  M. Best,et al.  On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results , 1991 .

[87]  J. Cockcroft Investment in Science , 1962, Nature.

[88]  Daniel Kuhn,et al.  Primal and dual linear decision rules in stochastic and robust optimization , 2011, Math. Program..

[89]  Melvyn Sim,et al.  Incorporating Asymmetric Distributional Information in Robust Value-at-Risk Optimization , 2008, Manag. Sci..

[90]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[91]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[92]  S. Ethier The Kelly system maximizes median fortune , 2004 .