Analytical robust tuning of PI controllers for first-order-plus-dead-time processes

This paper presents an analytically deducted procedure for tuning two-degree-of-freedom proportional integral (PI) controllers for first-order-plus-dead-time (FOPDT) controlled process. The equations incorporate a design parameter, which relates the feedback control systempsilas time constant, with the controlled process time constant. The design procedure considers the control-loop robustness by means of maximum sensitivity requirements, allowing the designer to deal with the performance-robustness trade-off.

[1]  D. Martin,et al.  Optimal Tuning of a Networked Linear Controller Using a Multi-Objective Genetic Algorithm. Application to a Complex Electromechanical Process , 2008, 2008 3rd International Conference on Innovative Computing Information and Control.

[2]  Daniel E. Rivera,et al.  Internal Model Control , 2010, Encyclopedia of Machine Learning.

[3]  Aidan O'Dwyer,et al.  Handbook of PI and PID controller tuning rules , 2003 .

[4]  Saeed Tavakoli,et al.  Optimal tuning of PI controllers for first order plus dead time/long dead time models using dimensional analysis , 2003, 2003 European Control Conference (ECC).

[5]  Ibrahim Kaya,et al.  Tuning PI controllers for stable processes with specifications on gain and phase margins. , 2004, ISA transactions.

[6]  Weng Khuen Ho,et al.  Self-tuning IMC-PID control with interval gain and phase margins assignment , 2001, IEEE Trans. Control. Syst. Technol..

[7]  John A. Miller,et al.  TUNING CONTROLLERS WITH ERROR-INTEGRAL CRITERIA , 1967 .

[8]  Chang Chieh Hang,et al.  Single-loop controller design via IMC principles , 2001, Autom..

[9]  Tong Heng Lee,et al.  PI Tuning in Terms of Gain and Phase Margins , 1998, Autom..

[10]  Stefan F. Graebe,et al.  Analytical PID parameter expressions for higher order systems , 1999, Autom..

[11]  K. Åström,et al.  Revisiting The Ziegler‐Nichols Tuning Rules For Pi Control , 2002 .

[12]  Mark L. Nagurka,et al.  Design of PID controllers satisfying gain margin and sensitivity constraints on a set of plants , 2004, Autom..

[13]  K.J. ÅSTRÖM,et al.  Design of PI Controllers based on Non-Convex Optimization , 1998, Autom..

[14]  Tore Hägglund,et al.  Advanced PID Control , 2005 .

[15]  Weng Khuen Ho,et al.  Tuning of PID controllers based on gain and phase margin specifications , 1995, Autom..

[16]  Chang Chieh Hang,et al.  Getting more phase margin and performance out of PID controllers , 1999, Autom..

[17]  M. Morari,et al.  Internal model control: PID controller design , 1986 .

[18]  Carlos E. Garcia,et al.  Internal model control. A unifying review and some new results , 1982 .

[19]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[20]  Daniel E. Rivera,et al.  Internal Model Control: A Comprehensive View , 1999 .

[21]  I-Lung Chien,et al.  Consider IMC Tuning to Improve Controller Performance , 1990 .

[22]  Raymond Gorez,et al.  New design relations for 2-DOF PID-like control systems , 2003, Autom..

[23]  Ioan Doré Landau,et al.  A method for the auto-calibration of PID controllers , 1995, Autom..

[24]  Teresa Mendonça,et al.  Control of Neuromuscular Blockade: A Method for the Autocalibration of Pid Controllers , 1997 .

[25]  Sigurd Skogestad,et al.  Simple analytic rules for model reduction and PID controller tuning , 2003 .

[26]  Tore Hägglund,et al.  Automatic tuning of simple regulators with specifications on phase and amplitude margins , 1984, Autom..

[27]  S. Skogestad Simple analytic rules for model reduction and PID controller tuning , 2004 .

[28]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[29]  Claudio Scali,et al.  ROBUST TUNING OF CONVENTIONAL CONTROLLERS , 1990 .