A genetic algorithm for automated horizon correlation across faults in seismic images

Finding corresponding seismic horizons which have been separated by a fault is still performed manually in geological interpretation of seismic images. The difficulties of automating this task are due to the small amount of local information typical for those images, resulting in a high degree of interpretation uncertainty. Our approach is based on a model consisting of geological and geometrical knowledge in order to support the low-level image information. Finding the geologically most probable matches of several horizons across a fault is a combinatorial optimization problem, which cannot be solved exhaustively since the number of combinations increases exponentially with the number of horizons. A genetic algorithm (GA) has been chosen as the most appropriate strategy to solve the optimization problem. Our implementation of a GA is adapted to this particular problem by introducing geological knowledge into the solution process. The results verify the suitability of the method and the appropriateness of the parameters chosen for the horizon correlation problem.

[1]  P. Bois CORRELATION A DISTANCE , 1971 .

[2]  Hideo Saito,et al.  Application of genetic algorithms to stereo matching of images , 1995, Pattern Recognit. Lett..

[3]  J. Coffeen,et al.  Seismic Exploration Fundamentals , 1978 .

[4]  Mrinal K. Sen,et al.  A Combined Genetic And Linear Inversion Algorithm For Seismic Waveform Inversion , 1993 .

[5]  P. Bois RECONNAISSANCE DES HORIZONS SISMIQUES PAR ANALYSE FACTORIELLE DISCRIMINANTE , 1976 .

[6]  Donald R. Jones,et al.  Solving Partitioning Problems with Genetic Algorithms , 1991, International Conference on Genetic Algorithms.

[7]  B. Kennett,et al.  Earthquake location genetic algorithms for teleseisms , 1992 .

[8]  David Coley,et al.  Introduction to Genetic Algorithms for Scientists and Engineers , 1999 .

[9]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  Klaus D. Tönnies,et al.  On the Relevance of Global Knowledge for Correlation-Based Seismic Image Interpretation , 2003, DAGM-Symposium.

[11]  P. Kearey,et al.  An Introduction to Geophysical Exploration, 2nd Edition , 1991 .

[12]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[13]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[14]  J. Cosgrove,et al.  Analysis of geological structures , 1989 .

[15]  M. Sambridge,et al.  Genetic algorithms in seismic waveform inversion , 1992 .

[16]  Panos Liatsis,et al.  Hybrid symbiotic genetic optimisation for robust edge-based stereo correspondence , 2001, Pattern Recognit..

[17]  Derek Smith,et al.  Bin Packing with Adaptive Search , 1985, ICGA.

[18]  Hugh M. Cartwright,et al.  Analysis of the distribution of airborne pollution using genetic algorithms , 1993 .

[19]  Christof Stork,et al.  Hybrid Genetic Autostatics: New Approach For Large-Amplitude Statics With Noisy Data , 1992 .

[20]  R. F. Stoisits,et al.  Applications of genetic algorithms in exploration and production , 1999 .

[21]  Robert Piessens,et al.  Load Balancing with Genetic Algorithms , 1992, Parallel Problem Solving from Nature.

[22]  Nigel A. Anstey,et al.  Seismic Interpretation:The Physical Aspects , 1977 .

[23]  Klaus D. Tönnies,et al.  The Application of Genetic Algorithms in Structural Seismic Image Interpretation , 2002, DAGM-Symposium.

[24]  M. Badley,et al.  Practical seismic interpretation , 1985 .

[25]  S. Sitharama Iyengar,et al.  Automatic Correlation and Calibration of Noisy Sensor Readings Using Elite Genetic Algorithms , 1996, Artif. Intell..

[26]  Mrinal K. Sen,et al.  2-D MIGRATION VELOCITY ESTIMATION USING A GENETIC ALGORITHM , 1993 .

[27]  Osamu Katai,et al.  Fusing multiple data and knowledge sources for signal understanding by genetic algorithm , 1996, IEEE Trans. Ind. Electron..

[28]  G. Keller An Introduction to Geophysical Exploration , 1986 .

[29]  W. Spears,et al.  On the Virtues of Parameterized Uniform Crossover , 1995 .

[30]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[31]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[32]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[33]  Michael Jervis,et al.  Prestack migration velocity estimation using nonlinear methods , 1996 .

[34]  Mrinal K. Sen,et al.  Rapid sampling of model space using genetic algorithms: examples from seismic waveform inversion , 1992 .

[35]  Ben A. van der Pluijm,et al.  Earth Structure: An Introduction to Structural Geology and Tectonics , 1997 .

[36]  Enrico Piazza Surface Movement Radar Image Correlation Using Genetic Algorithm , 2001, EvoWorkshops.

[37]  Jennifer S. Haase,et al.  Application of Evolutionary Programming to Earthquake Hypocenter Determination , 1995, Evolutionary Programming.

[38]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[39]  Jim Piper,et al.  Genetic algorithm for applying constraints in chromosome classification , 1995, Pattern Recognit. Lett..

[40]  Marco P. Schoen,et al.  Intelligent optimization techniques, genetic algorithms, tabu search, simulated annealing, and neural networks, D. T. Pham and D. Karaboga, Springer: Berlin, Heidelberg, New York; Springer London: London, 2000, 302pp, ISBN 1‐85233‐028‐7 , 2005 .

[41]  Emanuel Falkenauer,et al.  Genetic Algorithms and Grouping Problems , 1998 .

[42]  Yeong-Ho Ha,et al.  Stereo matching using genetic algorithm with adaptive chromosomes , 2001, Pattern Recognit..

[43]  Franklin Kemp,et al.  A Neural Net Branch And Bound Seismic Horizon Tracker , 1992 .

[44]  Mike Warner,et al.  Artificial Neural Networks for simultaneous multi Horizon tracking across Discontinuities , 2000 .