High‐Performance ZnO Transistors Processed Via an Aqueous Carbon‐Free Metal Oxide Precursor Route at Temperatures Between 80–180 °C

An aqueous and carbon-free metal-oxide precursor route is used in combination with a UV irradiation-assisted low-temperature conversion method to fabricate low-voltage ZnO transistors with electron mobilities exceeding 10 cm(2) /Vs at temperatures <180 °C. Because of its low temperature requirements the method allows processing of high-performance transistors onto temperature sensitive substrates such as plastic.

[1]  R. Theissmann,et al.  High performance low temperature solution-processed zinc oxide thin film transistor , 2011 .

[2]  U-In Chung,et al.  Trap-limited and percolation conduction mechanisms in amorphous oxide semiconductor thin film transistors , 2011 .

[3]  V. Goncharuk,et al.  Formation and decomposition of hydrogen peroxide during UV-radiation, ozonization, and O3/UV treatment of river water , 2008 .

[4]  Chung Kun Song,et al.  Low voltage pentacene thin film transistors employing a self-grown metal-oxide as a gate dielectric , 2006 .

[5]  Donal D. C. Bradley,et al.  Low-voltage ZnO thin-film transistors based on Y2O3 and Al2O3 high-k dielectrics deposited by spray pyrolysis in air , 2011 .

[6]  Guillermo Munuera,et al.  Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO2 surfaces. Part 1.—Role of hydroxyl groups in photo-adsorption , 1979 .

[7]  S. Cho,et al.  Novel Zinc Oxide Inks with Zinc Oxide Nanoparticles for Low-Temperature, Solution-Processed Thin-Film Transistors , 2012 .

[8]  Paul H. Wöbkenberg,et al.  High‐Performance Zinc Oxide Transistors and Circuits Fabricated by Spray Pyrolysis in Ambient Atmosphere , 2009 .

[9]  J. Wager,et al.  Transparent Electronics , 2003, Science.

[10]  Paul H. Wöbkenberg,et al.  High‐Mobility Low‐Voltage ZnO and Li‐Doped ZnO Transistors Based on ZrO2 High‐k Dielectric Grown by Spray Pyrolysis in Ambient Air , 2011, Advanced materials.

[11]  Stuart R. Thomas,et al.  Spray‐Deposited Li‐Doped ZnO Transistors with Electron Mobility Exceeding 50 cm2/Vs , 2010, Advanced materials.

[12]  Alberto Salleo,et al.  Room‐Temperature Fabrication of Ultrathin Oxide Gate Dielectrics for Low‐Voltage Operation of Organic Field‐Effect Transistors , 2011, Advanced materials.

[13]  I. Hennig,et al.  ZnO based field-effect transistors (FETs): solution-processable at low temperatures on flexible substrates , 2010 .

[14]  Tae Il Lee,et al.  Low‐Temperature, Solution‐Processed and Alkali Metal Doped ZnO for High‐Performance Thin‐Film Transistors , 2012, Advanced materials.

[15]  Vivek Subramanian,et al.  Transparent High‐Performance Thin Film Transistors from Solution‐Processed SnO2/ZrO2 Gel‐like Precursors , 2013, Advanced materials.

[16]  Elvira Fortunato,et al.  Transparent Electronics: From materials to devices , 2012 .

[17]  M. Kanatzidis,et al.  Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. , 2011, Nature materials.

[18]  Sarah Kim,et al.  Photo-induced hybrid nanopatterning of titanium dioxide via direct imprint lithography , 2010 .

[19]  Jooho Moon,et al.  Fully Flexible Solution‐Deposited ZnO Thin‐Film Transistors , 2010, Advanced materials.

[20]  R. Theissmann,et al.  Influence of the annealing atmosphere on solution based zinc oxide thin film transistors , 2011 .

[21]  Maxim Shkunov,et al.  Structural and Electrical Characterization of ZnO Films Grown by Spray Pyrolysis and Their Application in Thin‐Film Transistors , 2011 .

[22]  H. Sirringhaus,et al.  Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. , 2011, Nature materials.

[23]  J. J. Jeon,et al.  Ultraviolet Photo-Annealing Process for Low Temperature Processed Sol-Gel Zinc Tin Oxide Thin Film Transistors , 2012 .

[24]  C. Koo,et al.  Low-temperature soluble InZnO thin film transistors by microwave annealing , 2011 .

[25]  Henning Sirringhaus,et al.  Surface tension and fluid flow driven self-assembly of ordered ZnO nanorod films for high-performance field effect transistors. , 2006, Journal of the American Chemical Society.

[26]  Henning Sirringhaus,et al.  Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. , 2005, Nano letters.

[27]  Young Kwan Kim,et al.  Colloidal ZnO quantum dot-based, solution-processed transparent field-effect transistors , 2010 .

[28]  Olivier Soppera,et al.  "Influence of zirconium propoxide on the radical induced photopolymerisation of hybrid sol-gel materials , 2008 .

[29]  Yizheng Jin,et al.  Low-voltage zinc oxide thin-film transistors with solution-processed channel and dielectric layers below 150 °C , 2012 .

[30]  Xiaojun Guo,et al.  Solution-Processed Zinc Oxide Thin-Film Transistors With a Low-Temperature Polymer Passivation Layer , 2012, IEEE Electron Device Letters.

[31]  Sunho Jeong,et al.  Low-temperature, solution-processed metal oxide thin film transistors , 2012 .

[32]  Changdeuck Bae,et al.  High-performance low-temperature solution-processable ZnO thin film transistors by microwave-assisted annealing , 2011 .

[33]  Yong-Young Noh,et al.  Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films , 2012, Nature.

[34]  T. Hsieh,et al.  Highly stable precursor solution containing ZnO nanoparticles for the preparation of ZnO thin film transistors , 2010, Nanotechnology.

[35]  Tobin J. Marks,et al.  Transparent electronics : from synthesis to applications , 2010 .

[36]  D. Keszler,et al.  Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs. , 2008, Journal of the American Chemical Society.

[37]  Paul H. Wöbkenberg,et al.  Electronic properties of ZnO field-effect transistors fabricated by spray pyrolysis in ambient air , 2009 .

[38]  P. K. Nayak,et al.  High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment , 2012 .

[39]  Hendrik Faber,et al.  Low‐Temperature Solution‐Processed Memory Transistors Based on Zinc Oxide Nanoparticles , 2009 .