Russell's Notion of Scope

Despite the renown of 'On Denoting', much criticism has ignored or misconstrued Russell's treatment of scope, particularly in intensional, but also in extensional contexts. This has been rectified by more recent commentators, yet it remains largely unnoticed that the examples Russell gives of scope distinctions are questionable or inconsistent with his own philosophy. Nevertheless, Russell is right: scope does matter in intensional contexts. In Principia Mathematica, Russell proves a metatheorem to the effect that the scope of a single occurrence of a description in an extensional context does not matter, provided existence and uniqueness conditions are satisfied. But attempts to eliminate descriptions in more complicated cases may produce an analysis with more occurrences of descriptions than featured in the analysand. Taking alternation and negation to be primitive (as in the first edition of Principia), this can be resolved, although the proof is non-trivial. Taking the Sheffer stroke to be primitive (as proposed by Russell in the second edition), with bad choices of scope the analysis fails to terminate.