Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis
暂无分享,去创建一个
Philippe Debeer | Frank Speleman | Jan Hellemans | Andy Willaert | Filip Vanhoenacker | Anne De Paepe | Jo Vandesompele | Nadine Van Roy | G. Mortier | F. Speleman | B. Menten | J. Vandesompele | J. Hellemans | O. Preobrazhenska | D. Huylebroeck | K. Verschueren | J. Naeyaert | K. Janssens | W. Hul | A. Paepe | P. Debeer | P. Verdonk | F. Vanhoenacker | P. Coucke | A. Willaert | R. Savarirayan | Ravi Savarirayan | Danny Huylebroeck | S. Vermeulen | N. Roy | T. Costa | Olena Preobrazhenska | Peter C M Verdonk | Kristin Verschueren | Wim Van Hul | Teresa Costa | Katrien Janssens | Bjorn Menten | Stefan J T Vermeulen | Jean-Marie Naeyaert | Paul J Coucke | Geert R Mortier
[1] R. Happle. Melorheostosis may originate as a type 2 segmental manifestation of osteopoikilosis , 2004, American journal of medical genetics. Part A.
[2] Jing Huang,et al. Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. , 2004, Genome research.
[3] H. Ihn,et al. Impaired Smad7-Smurf-mediated negative regulation of TGF-beta signaling in scleroderma fibroblasts. , 2004, The Journal of clinical investigation.
[4] R. Lagier,et al. Osteopoikilosis: A radiological and pathological study , 2004, Skeletal Radiology.
[5] T. Ehrig,et al. Buschke-Ollendorff syndrome: report of a case and interpretation of the clinical phenotype as a type 2 segmental manifestation of an autosomal dominant skin disease. , 2003, Journal of the American Academy of Dermatology.
[6] J. Varga,et al. Expression and regulation of intracellular SMAD signaling in scleroderma skin fibroblasts. , 2003, Arthritis and rheumatism.
[7] K. Devriendt,et al. Melorheostosis in a family with autosomal dominant osteopoikilosis: Report of a third family , 2003, American journal of medical genetics. Part A.
[8] M. Taira,et al. XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos , 2003, Development.
[9] A. Economides,et al. 0163-769X/03/$20.00/0 Endocrine Reviews 24(2):218–235 Printed in U.S.A. Copyright © 2003 by The Endocrine Society doi: 10.1210/er.2002-0023 Bone Morphogenetic Proteins, Their Antagonists, and the Skeleton , 2022 .
[10] Jo Vandesompele,et al. RTPrimerDB: the Real-Time PCR primer and probe database , 2003, Nucleic Acids Res..
[11] C. Hall. International nosology and classification of constitutional disorders of bone (2001). , 2002, American journal of medical genetics.
[12] 木下 晃. Domain-specific mutations in TGFB1 result in camurati-engelmann disease , 2002 .
[13] F. Speleman,et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes , 2002, Genome Biology.
[14] Miikka Vikkula,et al. LDL Receptor-Related Protein 5 (LRP5) Affects Bone Accrual and Eye Development , 2001, Cell.
[15] D. Galas,et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. , 2001, American journal of human genetics.
[16] M Dioszegi,et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). , 2001, Human molecular genetics.
[17] J. Freyschmidt. Melorheostosis: a review of 23 cases , 2001, European Radiology.
[18] R. Gershoni-baruch,et al. Mutations in the gene encoding the latency-associated peptide of TGF-β1 cause Camurati-Engelmann disease , 2000, Nature Genetics.
[19] Naoyuki Taniguchi,et al. Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease , 2000, Nature Genetics.
[20] M. Paulin-Levasseur,et al. MAN1, an Inner Nuclear Membrane Protein That Shares the LEM Domain with Lamina-associated Polypeptide 2 and Emerin* , 2000, The Journal of Biological Chemistry.
[21] L. Nelles,et al. SIP1, a Novel Zinc Finger/Homeodomain Repressor, Interacts with Smad Proteins and Binds to 5′-CACCT Sequences in Candidate Target Genes* , 1999, The Journal of Biological Chemistry.
[22] N. Nevin,et al. Melorheostosis in a family with autosomal dominant osteopoikilosis. , 1999, American journal of medical genetics.
[23] Denis Vivien,et al. Direct binding of Smad3 and Smad4 to critical TGFβ‐inducible elements in the promoter of human plasminogen activator inhibitor‐type 1 gene , 1998, The EMBO journal.
[24] W. Cooney,et al. Melorheostosis in a patient with familial osteopoikilosis. , 1997, American journal of medical genetics.
[25] F. Speleman,et al. I;17 translocations and other chromosome 17 rearrangements in human primary neuroblastoma tumors and cell lines , 1994 .
[26] F. Speleman,et al. 1;17 translocations and other chromosome 17 rearrangements in human primary neuroblastoma tumors and cell lines. , 1994, Genes, chromosomes & cancer.
[27] G. Lathrop,et al. Easy calculations of lod scores and genetic risks on small computers. , 1984, American journal of human genetics.
[28] C. J. Campbell,et al. Melorheostosis. A report of the clinical, roentgenographic, and pathological findings in fourteen cases. , 1968, The Journal of bone and joint surgery. American volume.
[29] B. Lilja,et al. Osteopoikilosis--a clinical and genetic study. , 2009, Acta medica Scandinavica.
[30] Melnick Jc. Osteopathia condensans disseminata (osteopoikilosis); study of a family of 4 generations. , 1959 .
[31] J. Melnick. Osteopathia condensans disseminata (osteopoikilosis); study of a family of 4 generations. , 1959, The American journal of roentgenology, radium therapy, and nuclear medicine.